ﻻ يوجد ملخص باللغة العربية
We report on the development of the LISA Technology Package (LTP) experiment that will fly on board the LISA Pathfinder mission of the European Space Agency in 2008. We first summarize the science rationale of the experiment aimed at showing the operational feasibility of the so called Transverse-Traceless coordinate frame within the accuracy needed for LISA. We then show briefly the basic features of the instrument and we finally discuss its projected sensitivity and the extrapolation of its results to LISA.
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA Pathfinder mission, aims to demonstrate drag-free control for LISA test masses with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper describes the LTP measur
LISA (Laser Interferometer Space Antenna) is a joint mission of ESA and NASA which aims to be the first space-borne gravita- tional wave observatory. Due to the high complexity and technological challenges that LISA will face, ESA decided to launch a
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has de
The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about
Since the 2017 Nobel Prize in Physics was awarded for the observation of gravitational waves, it is fair to say that the epoch of gravitational wave astronomy (GWs) has begun. However, a number of interesting sources of GWs can only be observed from