ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Blueprints for Galaxies

40   0   0.0 ( 0 )
 نشر من قبل Lawrence M. Widrow
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an axisymmetric, equilibrium model for late-type galaxies which consists of an exponential disk, a Sersic bulge, and a cuspy dark halo. The model is specified by a phase space distribution function which, in turn, depends on the integrals of motion. Bayesian statistics and the Markov Chain Monte Carlo method are used to tailor the model to satisfy observational data and theoretical constraints. By way of example, we construct a chain of 10^5 models for the Milky Way designed to fit a wide range of photometric and kinematic observations. From this chain, we calculate the probability distribution function of important Galactic parameters such as the Sersic index of the bulge, the disk scale length, and the disk, bulge, and halo masses. We also calculate the probability distribution function of the local dark matter velocity dispersion and density, two quantities of paramount significance for terrestrial dark matter detection experiments. Though the Milky Way models in our chain all satisfy the prescribed observational constraints, they vary considerably in key structural parameters and therefore respond differently to non-axisymmetric perturbations. We simulate the evolution of twenty-five models which have different Toomre Q and Goldreich-Tremaine X parameters. Virtually all of these models form a bar, though some, more quickly than others. The bar pattern speeds are ~ 40 - 50 km/s/kpc at the time when they form and then decrease, presumably due to coupling of the bar with the halo. Since the Galactic bar has a pattern speed ~50 km/s/kpc we conclude that it must have formed recently.

قيم البحث

اقرأ أيضاً

89 - Ortwin Gerhard 1998
The mass and anisotropy of an elliptical galaxy can be simultaneously determined from velocity dispersion and line profile shape measurements. We describe the principles, techniques, and limitations of this approach, and the results obtained sofar. W e briefly discuss how best to combine these stellar-dynamical results with X-ray measurements and gravitational lensing analyses.
141 - Lawrence M. Widrow 2008
We construct self-consistent dynamical models for disk galaxies with triaxial, cuspy halos. We begin with an equilibrium, axisymmetric, disk-bulge-halo system and apply an artificial acceleration to the halo particles. By design, this acceleration co nserves energy and thereby preserving the systems differential energy distribution even as its phase space distribution function is altered. The halo becomes triaxial but its spherically-averaged density profile remains largely unchanged. The final system is in equilibrium, to a very good approximation, so long as the halos shape changes adiabatically. The disk and bulge are ``live while the halo is being deformed; they respond to the changing gravitational potential but also influence the deformation of the halo. We test the hypothesis that halo triaxiality can explain the rotation curves of low surface brightness galaxies by modelling the galaxy F568-3.
We describe our program for the dynamical modeling of early-type galaxies observed with the panoramic integral-field spectrograph SAURON. We are using Schwarzschilds numerical orbit superposition method to reproduce in detail all kinematical and phot ometric observables, and recover the intrinsic orbital structure of the galaxies. Since catastrophes are the most prominent features in the orbital observables, two-dimensional kinematical coverage is essential to constrain the dynamical models.
70 - B. Vollmer 2012
The spectacular head-on collision of the two gas-rich galaxies of the Taffy system, UGC 12914/15, gives us a unique opportunity to study the consequences of a direct ISM-ISM collision. To interpret existing multi-wavelength observations, we made dyna mical simulations of the Taffy system including a sticky particle component. To compare simulation snapshots to HI and CO observations, we assume that the molecular fraction of the gas depends on the square root of the gas volume density. For the comparison of our simulations with observations of polarized radio continuum emission, we calculated the evolution of the 3D large-scale magnetic field for our simulations. The induction equations including the time-dependent gas-velocity fields from the dynamical model were solved for this purpose. Our simulations reproduce the stellar distribution of the primary galaxy, UGC 12914, the prominent HI and CO gas bridge, the offset between the CO and HI emission in the bridge, the bridge isovelocity vectors parallel to the bridge, the HI double-line profiles in the bridge region, the large line-widths (~200 km/s) in the bridge region, the high field strength of the bridge large-scale regular magnetic field, the projected magnetic field vectors parallel to the bridge and the strong total power radio continuum emission from the bridge. The stellar distribution of the secondary model galaxy is more perturbed than observed. The observed distortion of the HI envelope of the Taffy system is not reproduced by our simulations which use initially symmetric gas disks. The model allows us to define the bridge region in three dimensions. We estimate the total bridge gas mass (HI, warm and cold H2) to be 5 to 6 10^9 M_sun, with a molecular fraction M_H2/M_HI of about unity (abrigded).
103 - Joshua D. Simon 2019
The 2020s are poised to continue the past two decades of significant advances based on observations of dwarf galaxies in the nearby universe. Upcoming wide-field photometric surveys will probe substantially deeper than previous data sets, pushing the discovery frontier for new dwarf galaxies to fainter magnitudes, lower surface brightnesses, and larger distances. These dwarfs will be compelling targets for testing models of galaxy formation and cosmology, including the properties of dark matter and possible modifications to gravity. However, most of the science that can be extracted from nearby dwarf galaxies relies on spectroscopy with large telescopes. We suggest that maximizing the scientific impact of near-future imaging surveys will require both major spectroscopic surveys on 6-10m telescopes and multiplexed spectroscopy with even larger apertures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا