ﻻ يوجد ملخص باللغة العربية
We describe our program for the dynamical modeling of early-type galaxies observed with the panoramic integral-field spectrograph SAURON. We are using Schwarzschilds numerical orbit superposition method to reproduce in detail all kinematical and photometric observables, and recover the intrinsic orbital structure of the galaxies. Since catastrophes are the most prominent features in the orbital observables, two-dimensional kinematical coverage is essential to constrain the dynamical models.
Elements of kinematical and dynamical modeling of elliptical galaxies (Es) are presented. In projection, NFW models resemble Sersic models, but with a very narrow range of shapes (m=3+/-1). The total density profile of Es cannot be NFW-like because t
We present results from a new and unique integral-field spectrograph, SAURON. It has a large field of view and high throughput and is primarily built for the study of stellar & gaseous kinematics and stellar populations in galaxies. Its aim is to car
We discuss some recent integral field spectroscopy using the SAURON instrument of a sample consisting of 24 early-type spirals, part of the SAURON Survey, and 18 late-type spirals. Using 2-dimensional maps of their stellar radial velocity, velocity d
Thanks to SAURON integral-field observations we uncovered the Planetary Nebulae (PNe) populations inhabiting the central and nuclear regions of our galactic neighbours M32 and M31, respectively, and discuss the significant differences between their c
The SAURON project will deliver two-dimensional spectroscopic data of a sample of nearby early-type galaxies with unprecedented quality. In this paper, we focus on the mapping of their stellar populations using the SAURON data, and present some preliminary results on a few prototypical cases.