ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Modeling of SAURON Galaxies

88   0   0.0 ( 0 )
 نشر من قبل Michele Cappellari
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe our program for the dynamical modeling of early-type galaxies observed with the panoramic integral-field spectrograph SAURON. We are using Schwarzschilds numerical orbit superposition method to reproduce in detail all kinematical and photometric observables, and recover the intrinsic orbital structure of the galaxies. Since catastrophes are the most prominent features in the orbital observables, two-dimensional kinematical coverage is essential to constrain the dynamical models.



قيم البحث

اقرأ أيضاً

69 - G. A. Mamon 2006
Elements of kinematical and dynamical modeling of elliptical galaxies (Es) are presented. In projection, NFW models resemble Sersic models, but with a very narrow range of shapes (m=3+/-1). The total density profile of Es cannot be NFW-like because t he predicted local M/L and aperture velocity dispersion within an effective radius (Re) are much lower than observed. Stars must then dominate Es out to a few Re. Fitting an NFW model to the total density profile of Sersic+NFW (stars+dark matter [DM]) Es results in very high concentration parameters, as found by X-ray observers. Kinematical modeling of Es assuming an isotropic NFW DM model underestimates M/L at the virial radius by a factor of 1.6 to 2.4, because dissipationless LCDM halos have slightly different density profiles and slightly radial velocity anisotropy. In N-body+gas simulations of Es as merger remnants of spirals embedded in DM halos, the slope of the DM density profile is steeper when the initial spiral galaxies are gas-rich. The Hansen & Moore (2006) relation between anisotropy and the slope of the density profile breaks down for gas and DM, but the stars follow an analogous relation with slightly less radial anisotropies for a given density slope. Using kurtosis (h_4) to infer anisotropy in Es is dangerous, as h_4 is also sensitive to small levels of rotation. The stationary Jeans equation provides accurate masses out to 8 Re. The discrepancy between the modeling of Romanowsky et al. (2003), indicating a dearth of DM in Es, and the simulations analyzed by Dekel et al. (2005), which match the spectroscopic observations of Es, is partly due to radial anisotropy and to observing oblate Es face-on. However, one of the 15 solutions to the orbit modeling of Romanowsky et al. is found to have an amount and concentration of DM consistent with LCDM predictions.
We present results from a new and unique integral-field spectrograph, SAURON. It has a large field of view and high throughput and is primarily built for the study of stellar & gaseous kinematics and stellar populations in galaxies. Its aim is to car ry out a systematic survey of the velocity fields, velocity dispersions, and line-strength distributions of nearby ellipticals, lenticular galaxies and spiral bulges. Its wide field is especially useful for the study of complicated velocity structures. Together with other spectroscopic data, images, and dynamical modelling, SAURON will help to constrain the intrinsic shapes, mass-to-light ratios, and stellar populations of early-type galaxies and spiral bulges.
We discuss some recent integral field spectroscopy using the SAURON instrument of a sample consisting of 24 early-type spirals, part of the SAURON Survey, and 18 late-type spirals. Using 2-dimensional maps of their stellar radial velocity, velocity d ispersion, and absorption line strength, it is now much easier to understand the nature of nearby galactic bulges. We discuss a few highlights of this work, and point out some new ideas about the formation of galactic bulges.
180 - Marc Sarzi 2011
Thanks to SAURON integral-field observations we uncovered the Planetary Nebulae (PNe) populations inhabiting the central and nuclear regions of our galactic neighbours M32 and M31, respectively, and discuss the significant differences between their c orresponding PNe luminosity functions in light of the properties of their parent stellar populations. In particular, we conclude that the lack of bright PNe in the nuclear regions of M31 is likely linked to the nearly Solar value for the stellar metallicity, consistent with previous suggestions that a larger metallicity would bias the Horizontal-Branch (HB) populations toward bluer colors, with fewer red HB stars capable of producing PNe and more blue HB stars that instead could contribute to the far-UV flux that is observed in metal-rich early-type galaxies and, incidentally, also in the nucleus of M31.
The SAURON project will deliver two-dimensional spectroscopic data of a sample of nearby early-type galaxies with unprecedented quality. In this paper, we focus on the mapping of their stellar populations using the SAURON data, and present some preliminary results on a few prototypical cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا