ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Masses for a Complete Census of Local Dwarf Galaxies

104   0   0.0 ( 0 )
 نشر من قبل Joshua Simon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joshua D. Simon




اسأل ChatGPT حول البحث

The 2020s are poised to continue the past two decades of significant advances based on observations of dwarf galaxies in the nearby universe. Upcoming wide-field photometric surveys will probe substantially deeper than previous data sets, pushing the discovery frontier for new dwarf galaxies to fainter magnitudes, lower surface brightnesses, and larger distances. These dwarfs will be compelling targets for testing models of galaxy formation and cosmology, including the properties of dark matter and possible modifications to gravity. However, most of the science that can be extracted from nearby dwarf galaxies relies on spectroscopy with large telescopes. We suggest that maximizing the scientific impact of near-future imaging surveys will require both major spectroscopic surveys on 6-10m telescopes and multiplexed spectroscopy with even larger apertures.



قيم البحث

اقرأ أيضاً

We present a study of a large, statistically complete sample of star-forming dwarf galaxies using mid-infrared observations from the {it Spitzer Space Telescope}. The relationships between metallicity, star formation rate (SFR) and mid-infrared color in these systems show that the galaxies span a wide range of properties. However, the galaxies do show a deficit of 8.0 um polycyclic aromatic hydrocarbon emission as is apparent from the median 8.0 um luminosity which is only 0.004 lstarf while the median $B$-band luminosity is 0.05 lstarb. Despite many of the galaxies being 8.0 um deficient, there is about a factor of 4 more extremely red galaxies in the [3.6] $-$ [8.0] color than for a sample of normal galaxies with similar optical colors. We show correlations between the [3.6] $-$ [8.0] color and luminosity, metallicity, and to a lesser extent SFRs that were not evident in the original, smaller sample studied previously. The luminosity--metallicity relation has a flatter slope for dwarf galaxies as has been indicated by previous work. We also show a relationship between the 8.0 um luminosity and the metallicity of the galaxy which is not expected given the competing effects (stellar mass, stellar population age, and the hardness of the radiation field) that influence the 8.0 um emission. This larger sample plus a well-defined selection function also allows us to compute the 8.0 um luminosity function and compare it with the one for the local galaxy population. Our results show that below 10$^{9}$ $L$solar, nearly all the 8.0 um luminosity density of the local universe arises from dwarf galaxies that exhibit strong ha emission -- i.e., 8.0 um and ha selection identify similar galaxy populations despite the deficit of 8.0 um emission observed in these dwarfs.
We derive the stellar-to-halo mass relation (SHMR), namely $f_starpropto M_star/M_{rm h}$ versus $M_star$ and $M_{rm h}$, for early-type galaxies from their near-IR luminosities (for $M_star$) and the position-velocity distributions of their globular cluster systems (for $M_{rm h}$). Our individual estimates of $M_{rm h}$ are based on fitting a dynamical model with a distribution function expressed in terms of action-angle variables and imposing a prior on $M_{rm h}$ from the concentration-mass relation in the standard $Lambda$CDM cosmology. We find that the SHMR for early-type galaxies declines with mass beyond a peak at $M_starsim 5times 10^{10}M_odot$ and $M_{rm h}sim 10^{12}M_odot$ (near the mass of the Milky Way). This result is consistent with the standard SHMR derived by abundance matching for the general population of galaxies, and with previous, less robust derivations of the SHMR for early types. However, it contrasts sharply with the monotonically rising SHMR for late types derived from extended HI rotation curves and the same $Lambda$CDM prior on $M_{rm h}$ as we adopt for early types. The SHMR for massive galaxies varies more or less continuously, from rising to falling, with decreasing disc fraction and decreasing Hubble type. We also show that the different SHMRs for late and early types are consistent with the similar scaling relations between their stellar velocities and masses (Tully-Fisher and Faber-Jackson relations). Differences in the relations between the stellar and halo virial velocities account for the similarity of the scaling relations. We argue that all these empirical findings are natural consequences of a picture in which galactic discs are built mainly by smooth and gradual inflow, regulated by feedback from young stars, while galactic spheroids are built by a cooperation between merging, black-hole fuelling, and feedback from AGNs.
125 - Y. Revaz , P. Jablonka , T. Sawala 2009
We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the star formation history of five Milky Way dSphs, Sextans, LeoII, Carina, Sculptor and Fornax. For the first time, [Mg/Fe] vs [Fe/H] diagrams derived from high-resolution spectroscopy of hundreds of individual stars are confronted with model predictions. We find that the diversity in dSph properties may well result from intrinsic evolution. We note, however, that the presence of gas in the final state of our simulations, of the order of what is observed in dwarf irregulars, calls for removal by external processes.
86 - A. Paccagnella 2017
Galaxies that abruptly interrupt their star formation in < 1.5 Gyr present recognizable features in their spectra (no emission and Hd in absorption) and are called post starburst (PSB) galaxies. By studying their stellar population properties and the ir location within the clusters, we obtain valuable insights on the physical processes responsible for star formation quenching. We present the first complete characterization of PSB galaxies in clusters at 0.04 < z < 0.07, based on WINGS and OmegaWINGS data, and contrast their properties to those of passive (PAS) and emission line (EML) galaxies. For V < 20, PSBs represent 7.2 +/- 0.2% of cluster galaxies within 1.2 virial radii. Their incidence slightly increases from the outskirts toward the cluster center and from the least toward the most luminous and massive clusters, defined in terms of X-ray luminosity and velocity dispersion. The phase-space analysis and velocity dispersion profile suggest that PSBs represent a combination of galaxies with different accretion histories. Moreover, PSBs with the strongest Hd are consistent with being recently accreted. PSBs have stellar masses, magnitudes, colors and morphologies intermediate between PAS and EML galaxies, typical of a population in transition from being star forming to passive. Comparing the fraction of PSBs to the fraction of galaxies in transition on longer timescales, we estimate that the short timescale star-formation quenching channel contributes two times more than the long timescale one to the growth of the passive population. Processes like ram-pressure stripping and galaxy-galaxy interactions are more efficient than strangulation in affecting star formation.
We measured stellar velocity dispersions sigma and dynamical masses of 9 massive (M~10^11 Msun) early-type galaxies (ETG) from the GMASS sample at redshift 1.4<z<2.0. The sigma are based on individual spectra for two galaxies at z~1.4 and on a stacke d spectrum for 7 galaxies with 1.6<z<2.0, with 202-h of exposure at the ESO Very Large Telescope. We constructed detailed axisymmetric dynamical models for the objects, based on the Jeans equations, taking the observed surface brightness (from deep HST/ACS observations), PSF and slit effects into account. Our dynamical masses M_Jeans agree within ~30% with virial estimates M_vir=5*Re*sigma^2/G, although the latter tend to be smaller. This suggests that sizes are not underestimated by more than a similar fraction. Our M_Jeans also agrees within a factor <2 with the M_pop previously derived using stellar population models and 11 bands photometry. This confirms that the galaxies are intrinsically massive. The inferred mass-to-light ratios M/L_U in the very age-sensitive rest frame U-band are consistent with passive evolution in the past ~1 Gyr (formation redshift z_f~3). A bottom-light stellar Initial Mass Function (IMF) appears to be required to ensure close agreement between M_Jeans and M_pop at z~2, as it does at z~0. The GMASS ETGs are on average more dense than their local counterpart. However a few percent of local ETGs of similar dynamical masses also have comparable sigma and mass surface density Sigma_50 inside Re.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا