ﻻ يوجد ملخص باللغة العربية
We consider a polymer brush grafted to a surface (acting as an electrode) and bearing a charged group at its free end. Using a second distant electrode, the brush is subject to a constant electric field. Based on a coarse-grained continuum model, we calculate the average brush height and find that the brush can stretch or compress depending on the applied field and charge end-group. We further look at an undulation mode of the flat polymer brush and find that the electrostatic energy scales linearly with the undulation wavenumber, $q$. Competition with surface tension, scaling as $q^2$, tends to stabilize a lateral $q$-mode of the polymer brush with a well-defined wavelength. This wavelength depends on the brush height, surface separation, and several system parameters.
The organization of nano-particles inside grafted polymer layers is governed by the interplay of polymer-induced entropic interactions and the action of externally applied fields. Earlier work had shown that strong external forces can drive the forma
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models ar
We study the changes in the conformations of brushes upon the addition of crosslinks between the chains using the bond fluctuation model. The Flory-Rehner model applied to uni-axially swollen networks predicts a collapse for large degrees of crosslin
We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our
We use computer simulations to investigate the stability of a two-component polymer brush de-mixing on a curved template into phases of different morphological properties. It has been previously shown via molecular dynamics simulations that immiscibl