ﻻ يوجد ملخص باللغة العربية
We study the changes in the conformations of brushes upon the addition of crosslinks between the chains using the bond fluctuation model. The Flory-Rehner model applied to uni-axially swollen networks predicts a collapse for large degrees of crosslinking $q$ proportional to $q^{-1/3}$ in disagreement with our simulation data. We show that the height reduction of the brushes is driven by monomer fluctuations in direction perpendicular to the grafting plane and not due to network elasticity. We observe that the impact of crosslinking is different for reactions between monomers of the same or on different chains. If the length reduction of the effective chain length due to both types of reactions is accounted for in a function $beta(q)$, the height of the brush can be derived from a Flory approach for the equilibrium brush height leading to $H(q)approx H_{b}beta(q)^{1/3}$, whereby $H_{b}$ denotes the height of the non-crosslinked brush.
The organization of nano-particles inside grafted polymer layers is governed by the interplay of polymer-induced entropic interactions and the action of externally applied fields. Earlier work had shown that strong external forces can drive the forma
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models ar
We consider a polymer brush grafted to a surface (acting as an electrode) and bearing a charged group at its free end. Using a second distant electrode, the brush is subject to a constant electric field. Based on a coarse-grained continuum model, we
We present a method to generate realistic, three-dimensional networks of crosslinked semiflexible polymers. The free energy of these networks is obtained from the force-extension characteristics of the individual polymers and their persistent directi
Reversible crosslinking is a design paradigm for polymeric materials, wherein they are microscopically reinforced with chemical species that form transient crosslinks between the polymer chains. Besides the potential for self-healing, recent experime