ﻻ يوجد ملخص باللغة العربية
We use computer simulations to investigate the stability of a two-component polymer brush de-mixing on a curved template into phases of different morphological properties. It has been previously shown via molecular dynamics simulations that immiscible chains having different length and anchored to a cylindrical template will phase separate into striped phases of different widths oriented perpendicularly to the cylindrical axis. We calculate free energy differences for a variety of stripe widths, and extract simple relationships between the sizes of the two polymers, N_1 and N_2, and the free energy dependence on the stripe width. We explain these relationships using simple physical arguments based upon previous theoretical work on the free energy of polymer brushes.
Molecular Dynamics simulations of a coarse-grained bead-spring model of flexible macromolecules tethered with one end to the surface of a cylindrical pore are presented. Chain length $N$ and grafting density $sigma$ are varied over a wide range and t
The organization of nano-particles inside grafted polymer layers is governed by the interplay of polymer-induced entropic interactions and the action of externally applied fields. Earlier work had shown that strong external forces can drive the forma
Molecular Dynamics (MD) simulations are presented for a coarse-grained bead-spring model of ring polymer brushes under compression. Flexible polymer brushes are always disordered during compression, whereas semiflexible brushes tend to be ordered und
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models ar
We consider a polymer brush grafted to a surface (acting as an electrode) and bearing a charged group at its free end. Using a second distant electrode, the brush is subject to a constant electric field. Based on a coarse-grained continuum model, we