ﻻ يوجد ملخص باللغة العربية
We propose a general formulation of perturbative quantum field theory on (finitely generated) projective modules over noncommutative algebras. This is the analogue of scalar field theories with non-trivial topology in the noncommutative realm. We treat in detail the case of Heisenberg modules over noncommutative tori and show how these models can be understood as large rectangular pxq matrix models, in the limit p/q->theta, where theta is a possibly irrational number. We find out that the modele is highly sensitive to the number-theoretical aspect of theta and suffers from an UV/IR-mixing. We give a way to cure the entanglement and prove one-loop renormalizability.
We discuss some basic aspects of quantum fields on star graphs, focusing on boundary conditions, symmetries and scale invariance in particular. We investigate the four-fermion bulk interaction in detail. Using bosonization and vertex operators, we so
We develop a reformulation of the functional integral for bosons in terms of bilocal fields. Correlation functions correspond to quantum probabilities instead of probability amplitudes. Discrete and continuous global symmetries can be treated similar
We study space-time symmetries in scalar quantum field theory (including interacting theories) on static space-times. We first consider Euclidean quantum field theory on a static Riemannian manifold, and show that the isometry group is generated by o
We review the development of the large $N$ method, where $N$ indicates the number of flavours, used to study perturbative and nonperturbative properties of quantum field theories. The relevant historical background is summarized as a prelude to the i
The $K_0$-group of the C*-algebra of multipullback quantum complex projective plane is known to be $mathbb{Z}^3$, with one generator given by the C*-algebra itself, one given by the section module of the noncommutative (dual) tautological line bundle