ﻻ يوجد ملخص باللغة العربية
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM.
General non-commutative supersymmetric quantum mechanics models in two and three dimensions are constructed and some two and three dimensional examples are explicitly studied. The structure of the theory studied suggest other possible applications in
For the purpose of analyzing observed phenomena, it has been convenient, and thus far sufficient, to regard gravity as subject to the deterministic principles of classical physics, with the gravitational field obeying Newtons law or Einsteins equatio
Holographic theories with classical gravity duals are maximally chaotic: they saturate a set of bounds on the spread of quantum information. In this paper we question whether non-locality can affect such bounds. Specifically, we consider the gravity
Some aspects of the exotic particle, associated with the two-parameter central extension of the planar Galilei group are reviewed. A fundamental property is that it has non-commuting position coordinates. Other and generalized non-commutative models
In this thesis we shall demonstrate that a measurement of position alone in non-commutative space cannot yield complete information about the quantum state of a particle. Indeed, the formalism used entails a description that is non-local in that it r