ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge Theories and Non-Commutative Geometry

152   0   0.0 ( 0 )
 نشر من قبل Jean Iliopoulos
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف Jean Iliopoulos




اسأل ChatGPT حول البحث

It is shown that a $d$-dimensional classical SU(N) Yang-Mills theory can be formulated in a $d+2$-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry.



قيم البحث

اقرأ أيضاً

It is shown that a $d$-dimensional classical SU(N) Yang-Mills theory can be formulated in a $d+2$-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry. In this paper we present an explicit proof for the case of the torus and the sphere.
We propose a formulation of d-dimensional SU(N) Yang-Mills theories on a d+2-dimensional space with the extra two dimensions forming a surface with non-commutative geometry. This equivalence is valid in any finite order in the 1/N expansion.
67 - A. Iorio , T. Sykora 2001
We study the space-time symmetries and transformation properties of the non-commutative U(1) gauge theory, by using Noether charges. We carry out our analysis by keeping an open view on the possible ways $theta^{mu u}$ could transform. We conclude t hat $theta^{mu u}$ cannot transform under any space-time transformation since the theory is not invariant under the conformal transformations, with the only exception of space-time translations. The same analysis applies to other gauge groups.
We study the dynamics of a N=2 supersymmetric SU(N) gauge theory with fundamental or adjoint matter in presence of a non trivial Omega-background along a two dimensional plane. The prepotential and chiral correlators of the gauge theory can be obtain ed, via a saddle point analysis, from an equation which can be viewed as a non commutative version of the standard Seiberg and Witten curve.
173 - Edwin Langmann 1996
I review results from recent investigations of anomalies in fermion--Yang Mills systems in which basic notions from noncommutative geometry (NCG) where found to naturally appear. The general theme is that derivations of anomalies from quantum field t heory lead to objects which have a natural interpretation as generalization of de Rham forms to NCG, and that this allows a geometric interpretation of anomaly derivations which is useful e.g. for making these calculations efficient. This paper is intended as selfcontained introduction to this line of ideas, including a review of some basic facts about anomalies. I first explain the notions from NCG needed and then discuss several different anomaly calculations: Schwinger terms in 1+1 and 3+1 dimensional current algebras, Chern--Simons terms from effective fermion actions in arbitrary odd dimensions. I also discuss the descent equations which summarize much of the geometric structure of anomalies, and I describe that these have a natural generalization to NCG which summarize the corresponding structures on the level of quantum field theory. Contribution to Proceedings of workshop `New Ideas in the Theory of Fundamental Interactions, Szczyrk, Poland 1995; to appear in Acta Physica Polonica B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا