ترغب بنشر مسار تعليمي؟ اضغط هنا

The magnetic field of molecular clouds

97   0   0.0 ( 0 )
 نشر من قبل Paolo Padoan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paolo Padoan




اسأل ChatGPT حول البحث

The magnetic field of molecular clouds (MCs) plays an important role in the process of star formation: it determins the statistical properties of supersonic turbulence that controls the fragmentation of MCs, controls the angular momentum transport during the protostellar collapse, and affects the stability of circumstellar disks. In this work, we focus on the problem of the determination of the magnetic field strength. We review the idea that the MC turbulence is super-Alfv{e}nic, and we argue that MCs are bound to be born super-Alfv{e}nic. We show that this scenario is supported by results from a recent simulation of supernova-driven turbulence on a scale of 250 pc, where the turbulent cascade is resolved on a wide range of scales, including the interior of MCs.



قيم البحث

اقرأ أيضاً

We present the results of an extensive Arecibo observational survey of magnetic field strengths in the inter-core regions of molecular clouds to determine their role in the evolution and collapse of molecular clouds as a whole. Sensitive 18 cm OH Zee man observations of absorption lines from Galactic molecular gas in the direction of extragalactic continuum sources yielded 38 independent measurements of magnetic field strengths. Zeeman detections were achieved at the three sigma level toward 9 clouds, while the others revealed sensitive upper limits to the magnetic field strength. Our results suggest that total field strengths in the inter-core regions of GMCs are about 15 microgauss.
We investigate the magnetic field which is generated by turbulent motions of a weakly ionized gas. Galactic molecular clouds give us an example of such a medium. As in the Kazantsev-Kraichnan model we assume a medium to be homogeneous and a neutral g as velocity field to be isotropic and delta-correlated in time. We take into consideration the presence of a mean magnetic field, which defines a preferred direction in space and eliminates isotropy of magnetic field correlators. Evolution equations for the anisotropic correlation function are derived. Isotropic cases with zero mean magnetic field as well as with small mean magnetic field are investigated. It is shown that stationary bounded solutions exist only in the presence of the mean magnetic field for the Kolmogorov neutral gas turbulence. The dependence of the magnetic field fluctuations amplitude on the mean field is calculated. The stationary anisotropic solution for the magnetic turbulence is also obtained for large values of the mean magnetic field.
We perform ideal MHD high resolution AMR simulations with driven turbulence and self-gravity and find that long filamentary molecular clouds are formed at the converging locations of large-scale turbulence flows and the filaments are bounded by gravi ty. The magnetic field helps shape and reinforce the long filamentary structures. The main filamentary cloud has a length of ~4.4 pc. Instead of a monolithic cylindrical structure, the main cloud is shown to be a collection of fiber/web-like sub-structures similar to filamentary clouds such as L1495. Unless the line-of-sight is close to the mean field direction, the large-scale magnetic field and striations in the simulation are found roughly perpendicular to the long axis of the main cloud, similar to 1495. This provides strong support for a large-scale moderately strong magnetic field surrounding L1495. We find that the projection effect from observations can lead to incorrect interpretations of the true three-dimensional physical shape, size, and velocity structure of the clouds. Helical magnetic field structures found around filamentary clouds that are interpreted from Zeeman observations can be explained by a simple bending of the magnetic field that pierces through the cloud. We demonstrate that two dark clouds form a T-shape configuration which are strikingly similar to the Infrared dark cloud SDC13 leading to the interpretation that SDC13 results from a collision of two long filamentary clouds. We show that a moderately strong magnetic field (M_A ~ 1) is crucial for maintaining a long and slender filamentary cloud for a long period of time ~0.5 million years.
We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of $sim$1.5$times$10$^{21}$ cm$^{-2}$ and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.
The structure of molecular clouds (MCs) holds important clues on the physical processes that lead to their formation and subsequent evolution. While it is well established that turbulence imprints a self-similar structure to the clouds, other process es, such as gravity and stellar feedback, can break their scale-free nature. The break of self-similarity can manifest itself in the existence of characteristic scales that stand out from the underlying structure generated by turbulent motions. We investigate the structure of the Cygnus-X North and the Polaris MCs which represent two extremes in terms of their star formation activity. We characterize the structure of the clouds using the delta-variance ($Delta$-variance) spectrum. In Polaris, the structure of the cloud is self-similar over more than one order of magnitude in spatial scales. In contrast, the $Delta$-variance spectrum of Cygnus-X exhibits an excess and a plateau on physical scales of ~0.5-1.2 pc. In order to explain the observations for Cygnus-X, we use synthetic maps in which we overlay populations of discrete structures on top of a fractal Brownian motion (fBm) image. The properties of these structures such as their major axis sizes, aspect ratios, and column density contrasts are randomly drawn from parameterized distribution functions. We show that it is possible to reproduce a $Delta$-variance spectrum that resembles the one of the Cygnus-X cloud. We also use a reverse engineering approach in which we extract the compact structures in the Cygnus-X cloud and re-inject them on an fBm map. The calculated $Delta$-variance using this approach deviates from the observations and is an indication that the range of characteristic scales observed in Cygnus-X is not only due to the existence of compact sources, but is a signature of the whole population of structures, including more extended and elongated structures
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا