ﻻ يوجد ملخص باللغة العربية
Recently we considered a stochastic discrete model which describes fronts of cells invading a wound cite{KSS}. In the model cells can move, proliferate, and experience cell-cell adhesion. In this work we focus on a continuum description of this phenomenon by means of a generalized Cahn-Hilliard equation (GCH) with a proliferation term. As in the discrete model, there are two interesting regimes. For subcritical adhesion, there are propagating pulled fronts, similarly to those of Fisher-Kolmogorov equation. The problem of front velocity selection is examined, and our theoretical predictions are in a good agreement with a numerical solution of the GCH equation. For supercritical adhesion, there is a nontrivial transient behavior, where density profile exhibits a secondary peak. To analyze this regime, we investigated relaxation dynamics for the Cahn-Hilliard equation without proliferation. We found that the relaxation process exhibits self-similar behavior. The results of continuum and discrete models are in a good agreement with each other for the different regimes we analyzed.
Pair interactions between active particles need not follow Newtons third law. In this work we propose a continuum model of pattern formation due to non-reciprocal interaction between multiple species of scalar active matter. The classical Cahn-Hillia
We consider the Cahn-Hilliard equation in one space dimension, perturbed by the derivative of a space and time white noise of intensity $epsilon^{frac 12}$, and we investigate the effect of the noise, as $epsilon to 0$, on the solutions when the init
We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in $u$ reaction term $g(x,t,u).$
The Cahn--Hilliard equation is a classic model of phase separation in binary mixtures that exhibits spontaneous coarsening of the phases. We study the Cahn--Hilliard equation with an imposed advection term in order to model the stirring and eventual
We consider a Cahn-Hilliard equation which is the conserved gradient flow of a nonlocal total free energy functional. This functional is characterized by a Helmholtz free energy density, which can be of logarithmic type. Moreover, the spatial interac