ترغب بنشر مسار تعليمي؟ اضغط هنا

Cahn-Hilliard Equation with Nonlocal Singular Free Energies

188   0   0.0 ( 0 )
 نشر من قبل Stefano Bosia
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a Cahn-Hilliard equation which is the conserved gradient flow of a nonlocal total free energy functional. This functional is characterized by a Helmholtz free energy density, which can be of logarithmic type. Moreover, the spatial interactions between the different phases are modeled by a singular kernel. As a consequence, the chemical potential $mu$ contains an integral operator acting on the concentration difference $c$, instead of the usual Laplace operator. We analyze the equation on a bounded domain subject to no-flux boundary condition for $mu$ and by assuming constant mobility. We first establish the existence and uniqueness of a weak solution and some regularity properties. These results allow us to define a dissipative dynamical system on a suitable phase-space and we prove that such a system has a (connected) global attractor. Finally, we show that a Neumann-like boundary condition can be recovered for $c$, provided that it is supposed to be regular enough.



قيم البحث

اقرأ أيضاً

We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space- time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche and Zambotti, we use a method based on infinite dimensional equations, approximation by regular equations and convergence of the approximated semi-group. We obtain existence and uniqueness of solution for nonnegative intial conditions, results on the invariant measures, and on the reflection measures.
We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in $u$ reaction term $g(x,t,u).$
We study a Cahn-Hilliard-Hele-Shaw (or Cahn-Hilliard-Darcy) system for an incompressible mixture of two fluids. The relative concentration difference $varphi$ is governed by a convective nonlocal Cahn-Hilliard equation with degenerate mobility and lo garithmic potential. The volume averaged fluid velocity $mathbf{u}$ obeys a Darcys law depending on the so-called Korteweg force $mu abla varphi$, where $mu$ is the nonlocal chemical potential. In addition, the kinematic viscosity $eta$ may depend on $varphi$. We establish first the existence of a global weak solution which satisfies the energy identity. Then we prove the existence of a strong solution. Further regularity results on the pressure and on $mathbf{u}$ are also obtained. Weak-strong uniqueness is demonstrated in the two dimensional case. In the three-dimensional case, uniqueness of weak solutions holds if $eta$ is constant. Otherwise, weak-strong uniqueness is shown by assuming that the pressure of the strong solution is $alpha$-H{o}lder continuous in space for $alphain (1/5,1)$.
We consider a relaxation of the viscous Cahn-Hilliard equation induced by the second-order inertial term~$u_{tt}$. The equation also contains a semilinear term $f(u)$ of singular type. Namely, the function $f$ is defined only on a bounded interval of ${mathbb R}$ corresponding to the physically admissible values of the unknown $u$, and diverges as $u$ approaches the extrema of that interval. In view of its interaction with the inertial term $u_{tt}$, the term $f(u)$ is difficult to be treated mathematically. Based on an approach originally devised for the strongly damped wave equation, we propose a suitable concept of weak solution based on duality methods and prove an existence result.
The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity $mathbf{u}$, while the latter rules evolution of $varphi$, the difference of the (relative) concentrations of the two phases. The two equations are known as the Cahn-Hilliard-Brinkman (CHB) system. In particular, the Brinkman equation is a Stokes-like equation with a forcing term (Korteweg force) which is proportional to $mu ablavarphi$, where $mu$ is the chemical potential. When the viscosity vanishes, then the system becomes the Cahn-Hilliard-Hele-Shaw (CHHS) system. Both systems have been studied from the theoretical and the numerical viewpoints. However, theoretical results on the CHHS system are still rather incomplete. For instance, uniqueness of weak solutions is unknown even in 2D. Here we replace the usual CH equation with its physically more relevant nonlocal version. This choice allows us to prove more about the corresponding nonlocal CHHS system. More precisely, we first study well-posedness for the CHB system, endowed with no-slip and no-flux boundary conditions. Then, existence of a weak solution to the CHHS system is obtained as a limit of solutions to the CHB system. Stronger assumptions on the initial datum allow us to prove uniqueness for the CHHS system. Further regularity properties are obtained by assuming additional, though reasonable, assumptions on the interaction kernel. By exploiting these properties, we provide an estimate for the difference between the solution to the CHB system and the one to the CHHS system with respect to viscosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا