ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of time, temperature, confining pressure and fluid content on the experimental compaction of spherical grains

77   0   0.0 ( 0 )
 نشر من قبل Francois Renard
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Magali Rossi




اسأل ChatGPT حول البحث

Theoretical models of compaction processes, such as for example intergranular pressure-solution (IPS), focus on deformation occurring at the contacts between spherical grains that constitute an aggregate. In order to investigate the applicability of such models, and to quantify the deformation of particles within an aggregate, isostatic experiments were performed in cold-sealed vessels on glass sphere aggregates at 200 MPa confining pressure and 350 degrees C with varying amounts of fluid.

قيم البحث

اقرأ أيضاً

Stylolites are spectacular rough dissolution surfaces that are found in many rock types. Despite many studies, their genesis is still debated, particularly the time scales of their formation and the relationship between this time and their morphology . We developed a new discrete simulation technique to explore the dynamic growth of the stylolite roughness, starting from an initially flat dissolution surface. We demonstrate that the typical steep stylolite teeth geometry can accurately be modelled and reproduce natural patterns. The growth of the roughness takes place in two successive time regimes: i) an initial non-linear increase in roughness amplitude that follows a power-law in time up to ii) a critical time where the roughness amplitude saturates and stays constant.
We study a variant of the well known Maxwell model for viscoelastic fluids, namely we consider the Maxwell fluid with viscosity and relaxation time depending on the pressure. Such a model is relevant for example in modelling behaviour of some polymer s and geomaterials. Although it is experimentally known that the material moduli of some viscoelastic fluids can depend on the pressure, most of the studies concerning the motion of viscoelastic fluids do not take such effects into account despite their possible practical significance in technological applications. Using a generalized Maxwell model with pressure dependent material moduli we solve a simple boundary value problem and we demonstrate interesting non-classical features exhibited by the model.
137 - Manvir S. Kushwaha 2016
Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting {em spherical} quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the f ramework of Bohm-Pines random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.
In order to explore the magnetostrophic regime expected for planetary cores, experiments have been conducted in a rotating sphere filled with liquid sodium, with an imposed dipolar magnetic field (the DTS setup). The field is produced by a permanent magnet enclosed in an inner sphere, which can rotate at a separate rate, producing a spherical Couette flow. The flow properties are investigated by measuring electric potentials on the outer sphere, the induced magnetic field in the laboratory frame, and velocity profiles inside the liquid sodium using ultrasonic Doppler velocimetry. The present article focuses on the time-averaged axisymmetric part of the flow. The Doppler profiles show that the angular velocity of the fluid is relatively uniform in most of the fluid shell, but rises near the inner sphere, revealing the presence of a magnetic wind, and gently drops towards the outer sphere. The transition from a magnetostrophic flow near the inner sphere to a geostrophic flow near the outer sphere is controlled by the local Elsasser number. For Rossby numbers up to order 1, the observed velocity profiles all show a similar shape. Numerical simulations in the linear regime are computed, and synthetic velocity profiles are compared with the measured ones. In the geostrophic region, a torque-balance model provides very good predictions. We find that the induced magnetic field varies in a consistent fashion, and displays a peculiar peak in the counter-rotating regime. This happens when the fluid rotation rate is almost equal and opposite to the outer sphere rotation rate. The fluid is then almost at rest in the laboratory frame, and the Proudman-Taylor constraint vanishes, enabling a strong meridional flow. We suggest that dynamo action might be favored in such a situation.
144 - Denys Dutykh 2009
The present article is devoted to the influence of sediment layers on the process of tsunami generation. The main scope here is to demonstrate and especially quantify the effect of sedimentation on vertical displacements of the seabed due to an under water earthquake. The fault is modelled as a Volterra-type dislocation in an elastic half-space. The elastodynamics equations are integrated with a finite element method. A comparison between two cases is performed. The first one corresponds to the classical situation of an elastic homogeneous and isotropic half-space, which is traditionally used for the generation of tsunamis. The second test case takes into account the presence of a sediment layer separating the oceanic column from the hard rock. Some important differences are revealed. We conjecture that deformations in the generation region may be amplified by sedimentary deposits, at least for some parameter values. The mechanism of amplification is studied through careful numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا