ﻻ يوجد ملخص باللغة العربية
The present article is devoted to the influence of sediment layers on the process of tsunami generation. The main scope here is to demonstrate and especially quantify the effect of sedimentation on vertical displacements of the seabed due to an underwater earthquake. The fault is modelled as a Volterra-type dislocation in an elastic half-space. The elastodynamics equations are integrated with a finite element method. A comparison between two cases is performed. The first one corresponds to the classical situation of an elastic homogeneous and isotropic half-space, which is traditionally used for the generation of tsunamis. The second test case takes into account the presence of a sediment layer separating the oceanic column from the hard rock. Some important differences are revealed. We conjecture that deformations in the generation region may be amplified by sedimentary deposits, at least for some parameter values. The mechanism of amplification is studied through careful numerical simulations.
One of the most important aspects in tsunami studies is the wave behavior when it approaches the coast. Information on physical parameters that characterize waves is often limited because of the diffilculties in achieving accurate measurements at the
We consider the problem of predicting the time evolution of influence, the expected number of activated nodes, given a set of initially active nodes on a propagation network. To address the significant computational challenges of this problem on larg
Sedimentary records of tsunamis are a precious tool to assess the occurrence of past events, as attested by an abundant literature, which has seen a particular boom in the aftermath of the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Despit
Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems
A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seism