ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of sedimentary layering on tsunami generation

140   0   0.0 ( 0 )
 نشر من قبل Denys Dutykh
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Denys Dutykh




اسأل ChatGPT حول البحث

The present article is devoted to the influence of sediment layers on the process of tsunami generation. The main scope here is to demonstrate and especially quantify the effect of sedimentation on vertical displacements of the seabed due to an underwater earthquake. The fault is modelled as a Volterra-type dislocation in an elastic half-space. The elastodynamics equations are integrated with a finite element method. A comparison between two cases is performed. The first one corresponds to the classical situation of an elastic homogeneous and isotropic half-space, which is traditionally used for the generation of tsunamis. The second test case takes into account the presence of a sediment layer separating the oceanic column from the hard rock. Some important differences are revealed. We conjecture that deformations in the generation region may be amplified by sedimentary deposits, at least for some parameter values. The mechanism of amplification is studied through careful numerical simulations.

قيم البحث

اقرأ أيضاً

One of the most important aspects in tsunami studies is the wave behavior when it approaches the coast. Information on physical parameters that characterize waves is often limited because of the diffilculties in achieving accurate measurements at the time of the event. The impact of a tsunami on the coast is governed by nonlinear physics such as turbulence with spatial and temporal variability. The use of the Smoothed Particle Hydrodynamic method (SPH) presents advantages over models based on two-dimensional Shallow Waters Equations (SWE), because the assumed vertical velocity simplifies hydrodynamics in two dimensions. The study presented here reports numerical SPH simulations of the tsunami event occurred in Coquimbo (Chile) on September 16 of 2015. On the basis of the reconstruction of the physical parameters that characterized this event (flow velocities, direction and water elevations), calibrated by a reference rodel, force values on buildings located on the study coast were numerically calculated, and compared with an estimate of the Chilean Structural Design Standard. Finally, discussion and conclusions of the comparison of both methodologies are presented, including an influence analysis of the topographical detail of the model in the estimation of hydrodynamic forces.
We consider the problem of predicting the time evolution of influence, the expected number of activated nodes, given a set of initially active nodes on a propagation network. To address the significant computational challenges of this problem on larg e-scale heterogeneous networks, we establish a system of differential equations governing the dynamics of probability mass functions on the state graph where the nodes each lumps a number of activation states of the network, which can be considered as an analogue to the Fokker-Planck equation in continuous space. We provides several methods to estimate the system parameters which depend on the identities of the initially active nodes, network topology, and activation rates etc. The influence is then estimated by the solution of such a system of differential equations. This approach gives rise to a class of novel and scalable algorithms that work effectively for large-scale and dense networks. Numerical results are provided to show the very promising performance in terms of prediction accuracy and computational efficiency of this approach.
Sedimentary records of tsunamis are a precious tool to assess the occurrence of past events, as attested by an abundant literature, which has seen a particular boom in the aftermath of the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Despit e an extensive literature, there is very little to no understanding of the role that the changing coastal environment is playing on the record of a tsunami, and for a given location, it is still unclear whether the largest tsunamis leave the largest amount of deposits. To research this question, the present study took place in Japan, in the Tohoku Region at Agawa-pond, because the pond act as a sediment trap. Using a sediment-slicer, a 1 m thick deposit was retrieved, from which 4 tsunami sequences were identified, including the latest 2011 tsunami. Using a series of sedimentary proxies: the AMS (Anisotropy of Magnetic Susceptibility), grain size analysis, quartz morphoscopy (morphology and surface characteristics) and the analysis of microfossils, disparities between the tsunami deposits were identified and most importantly a clear thinning of the tsunami deposit towards the top. Provided the present evidences, the authors discuss that the upward fining is due to at least two components that are seldom assessed in tsunami research (1) a modification of the depositional environment, with the progressive anthropization of the coast, providing less sediments to remobilize; and (2) a progressive filling of the Agawa pond, which progressively loses its ability to trap tsunami materials.
Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude--longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis, dam break problems, and storm surge. Documentation and download information is available at www.clawpack.org/geoclaw
A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seism ic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا