ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of coherence revival and fidelity saturation in a delta-kicked rotor potential

256   0   0.0 ( 0 )
 نشر من قبل Saijun Wu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally investigate the effect of atomic $delta$-kicked rotor potentials on the mutual coherence between wavepackets in an atom interferometer. The differential action of the kicked rotor degrades the mutual coherence, leading to a reduction of the interferometry fringe visibility; however, when the repetition rate of the kicked rotor is at or near the quantum resonance, we observe revival of matter-wave coherence as the number of kicks increases, resulting in non-vanishing coherence in the large kick number limit. This coherence saturation effect reflects a saturation of fidelity decay due to momentum displacements in deep quantum regime. The saturation effect is accompanied with an invariant distribution of matter-wave coherence under the kicked rotor perturbations.

قيم البحث

اقرأ أيضاً

271 - K. Henderson , H. Kelkar , T.C. Li 2006
We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of the experimental data suggests that the localization is due to energetic atoms leaking over the barrier. Our data also indicates a correlation between collisions and the destruction of the Bose-Einstein condensate fraction.
We develop the Wigner phase space representation of a kicked particle for an arbitrary but periodic kicking potential. We use this formalism to illustrate quantum resonances and anti--resonances.
We propose two experimentally feasible methods based on atom interferometry to measure the quantum state of the kicked rotor.
We report for the first time, laser spectroscopy of the 1S0 - 3P0 clock transition in 27Al+. A single aluminum ion and a single beryllium ion are simultaneously confined in a linear Paul trap, coupled by their mutual Coulomb repulsion. This coupling allows the beryllium ion to sympathetically cool the aluminum ion, and also enables transfer of the aluminums electronic state to the berylliums hyperfine state, which can be measured with high fidelity. These techniques are applied to a measurement of the clock transition frequency, u = 1 121 015 393 207 851(8) Hz. They are also used to measure the lifetime of the metastable clock state, tau = 20.6 +/- 1.4 s, the ground state 1S0 g-factor, g_S = -0.00079248(14), and the excited state 3P0 g-factor, g_P = -0.00197686(21), in units of the Bohr magneton.
The study of quantum resonances in the chaotic atom-optics kicked rotor system is of interest from two different perspectives. In quantum chaos, it marks out the regime of resonant quantum dynamics in which the atomic cloud displays ballistic mean en ergy growth due to coherent momentum transfer. Secondly, the sharp quantum resonance peaks are useful in the context of measurement of Talbot time, one of the parameter that helps in precise measurement of fine structure constant. Most of the earlier works rely on fidelity based approach and have proposed Talbot time measurement through experimental determination of the momentum space probability density of the periodically kicked atomic cloud. Fidelity approach has the disadvantage that phase reversed kicks need to be imparted as well which potentially leads to dephasing. In contrast to this, in this work, it is theoretically shown that, without manipulating the kick sequences, the quantum resonances through position space density can be measured more accurately and is experimentally feasible as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا