ترغب بنشر مسار تعليمي؟ اضغط هنا

Bose-Einstein Condensate Driven by a Kicked Rotor in a Finite Box

272   0   0.0 ( 0 )
 نشر من قبل Kevin Henderson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of the experimental data suggests that the localization is due to energetic atoms leaking over the barrier. Our data also indicates a correlation between collisions and the destruction of the Bose-Einstein condensate fraction.



قيم البحث

اقرأ أيضاً

Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.
We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to t he cell created electric charges on the cell walls. Avoiding accumulation of the charges and realizing good control over the applied electric field was obtained when the fields were applied only for a short time, typically a few microseconds. Rydberg excitations of the Bose-Einstein condensates loaded into quasi one-dimensional traps and in optical lattices have been investigated. The results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations controlled by the dipole-dipole interaction. The optical lattice applied along the one-dimensional geometry produces localized, collective Rydberg excitations controlled by the nearest-neighbour blockade.
We demonstrate modulation of the effective interaction between the magnetic sublevels of the hyperfine spin $F=1$ in a $^{87}$Rb Bose-Einstein condensate by Rabi coupling with radio-frequency (rf) field. The use of the $F=1$ manifold enables us to ob serve the long-term evolution of the system owing to the absence of inelastic collisional losses. We observe that the evolution of the density distribution reflects the change in the effective interaction between atoms due to rf coupling. We also realize a miscibility-to-immiscibility transition in the magnetic sublevels of $m = pm 1$ by quenching the rf field. Rf-induced interaction modulation in long-lived states as demonstrated here will facilitate the study of out-of-equilibrium quantum systems.
The coupling of electrons to matter is at the heart of our understanding of material properties such as electrical conductivity. One of the most intriguing effects is that electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, the basis for BCS superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate (BEC) and show that it can excite phonons and eventually set the whole condensate into a collective oscillation. We find that the coupling is surprisingly strong as compared to ionic impurities due to the more favorable mass ratio. The electron is held in place by a single charged ionic core forming a Rydberg bound state. This Rydberg electron is described by a wavefunction extending to a size comparable to the dimensions of the BEC, namely up to 8 micrometers. In such a state, corresponding to a principal quantum number of n=202, the Rydberg electron is interacting with several tens of thousands of condensed atoms contained within its orbit. We observe surprisingly long lifetimes and finite size effects due to the electron exploring the wings of the BEC. Based on our results we anticipate future experiments on electron wavefunction imaging, investigation of phonon mediated coupling of single electrons, and applications in quantum optics.
We investigate the dynamics of a Bose-Einstein condensate interacting with two non-interfering and counterpropagating modes of a ring resonator. Superfluid, supersolid and dynamic phases are identified experimentally and theoretically. The supersolid phase is obtained for sufficiently equal pump strengths for the two modes. In this regime we observe the emergence of a steady state with crystalline order, which spontaneously breaks the continuous translational symmetry of the system. The supersolidity of this state is demonstrated by the conservation of global phase coherence at the superfluid to supersolid phase transition. Above a critical pump asymmetry the system evolves into a dynamic run-away instability commonly known as collective atomic recoil lasing. We present a phase diagram and characterize the individual phases by comparing theoretical predictions with experimental observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا