ﻻ يوجد ملخص باللغة العربية
We report for the first time, laser spectroscopy of the 1S0 - 3P0 clock transition in 27Al+. A single aluminum ion and a single beryllium ion are simultaneously confined in a linear Paul trap, coupled by their mutual Coulomb repulsion. This coupling allows the beryllium ion to sympathetically cool the aluminum ion, and also enables transfer of the aluminums electronic state to the berylliums hyperfine state, which can be measured with high fidelity. These techniques are applied to a measurement of the clock transition frequency, u = 1 121 015 393 207 851(8) Hz. They are also used to measure the lifetime of the metastable clock state, tau = 20.6 +/- 1.4 s, the ground state 1S0 g-factor, g_S = -0.00079248(14), and the excited state 3P0 g-factor, g_P = -0.00197686(21), in units of the Bohr magneton.
The hyperfine induced 2s 2p 3P0 -> 2s2 1S0 transition rate in Be-like sulfur was measured by monitoring the decay of isotopically pure beams of 32-S12+ and 33-S12+ ions in a heavy-ion storage ring. Within the 4% experimental uncertainty the experimen
We report the first laser spectroscopy of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$. Clock operation is demonstrated on three pairs of Zeeman transitions, one pair from each hyperfine manifold of the $^3$D$_1$ term. We measure the
We measured the absolute frequency of the optical clock transition 1S0 (F = 1/2) - 3P0 (F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured agains
We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the lon
Optical atomic clocks promise timekeeping at the highest precision and accuracy, owing to their high operating frequencies. Rigorous evaluations of these clocks require direct comparisons between them. We have realized a high-performance remote compa