ترغب بنشر مسار تعليمي؟ اضغط هنا

Features of magnetic and magnetoelectric properties, H-T phase diagram of GdCr3(BO3)4

97   0   0.0 ( 0 )
 نشر من قبل Aleksei Bludov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Comprehensive studies of magnetic properties of GdCr3(BO3)4 single crystal have been carried out. The integrals of intrachain and interchain exchange interactions in the chromium subsystem have been determined and the strength of Cr-Gd exchange interaction has been estimated. The values of the exchange field and the effective magnetic anisotropy field of GdCr3(BO3)4 have been estimated. The electric polarization along the a axis in the longitudinal geometry of the experiment has been detected. Correlations between the electric polarization and the magnetization of the studied compound have been found. The spin-reorientation phase transition in the magnetically ordered state has been found. This transition exists for the external magnetic field applied along any crystallographic direction and the transition field depends weakly on the direction of the field. The nature of the spin-reorientation phase transition has been discussed. Magnetic phase diagram has been constructed and spin configurations for the low-field and high-field phases have been proposed.



قيم البحث

اقرأ أيضاً

Complex experimental and theoretical study of the magnetic, magnetoelectric, and magnetoelastic properties of neodymium iron borate NdFe3(BO3)4 along various crystallographic directions have been carried out in strong pulsed magnetic fields up to 230 kOe in a temperature range of 4.2-50 K. It has been found that neodymium iron borate, as well as gadolinium iron borate, is a multiferroic. It has much larger (above 3 10^(-4) C/m^2) electric polarization controlled by the magnetic field and giant quadratic magnetoelectric effect. The exchange field between the rare-earth and iron subsystems (~50 kOe) has been determined for the first time from experimental data. The theoretical analysis based on the magnetic symmetry and quantum properties of the Nd ion in the crystal provides an explanation of an unusual behavior of the magnetoelectric and magnetoelastic properties of neodymium iron borate in strong magnetic fields and correlation observed between them.
In-field DC and AC magnetization measurements were carried out on a sigma-phase Fe55Re45 intermetallic compound aimed at determination of the magnetic phase diagram in the H-T plane. Field cooled, M_FC, and zero-field cooled, M_ZFC, DC magnetization curves were measured in the magnetic field, H, up to 1200 Oe. AC magnetic susceptibility measurements were carried out at a constant frequency of 1465 Hz under DC fields up to H=500 Oe. The obtained results provide evidences for re-entrant magnetism in the investigated sample. The magnetic phase diagrams in the H-T plane have been outlined based on characteristic temperatures determined from the DC and AC measurements. The phase diagrams are similar yet not identical. The main difference is that in the DC diagram constructed there are two cross-over transitions within the strong-irreversibility spin-glass state, whereas in the AC susceptibility based diagram only one transition is observed. The border lines (irreversibility, cross-over) can be described in terms of the power laws.
409 - S. Gabani , S. Matas , P. Priputen 2007
Magnetic structure of single crystalline TmB4 has been studied by magnetization, magnetoresistivity and specific heat measurements. A complex phase diagram with different antiferromagnetic (AF) phases was observed below TN1 = 11.7 K. Besides the plat eau at half-saturated magnetization (1/2 MS), also plateaus at 1/9, 1/8 and 1/7 of MS were observed as function of applied magnetic field B//c. From additional neutron scattering experiments on TmB4, we suppose that those plateaus arise from a stripe structure which appears to be coherent domain boundaries between AF ordered blocks of 7 or 9 lattice constants. The received results suggest that the frustration among the Tm3+ magnetic ions, which maps to a geometrically frustrated Shastry-Sutherland lattice lead to strong competition between AF and ferromagnetic (FM) order. Thus, stripe structures in intermediate field appear to be the best way to minimize the magnetostatic energy against other magnetic interactions between the Tm ions combined with very strong Ising anisotropy.
Dynamic magnetic properties of magnetoelectric TmAl3(BO3)4 borate have been investigated by terahertz spectroscopy. Crystal field (CF) transitions within the ground multiplet 3H6 of Tm3+ ions are observed and they are identified as magnetic-dipole tr ansitions from the ground singlet A1 to the next excited doublet E of Tm3+ ions. Unexpected fine structure of the transitions is detected at low temperatures. The new modes are assigned to local distortions of the sites with D3 symmetry by Bi3+ impurities, which resulted in the splitting of A1 -> E transition. Two types of locally distorted sites are identified and investigated. The main contribution to the static magnetic susceptibility is shown to be determined by the matrix elements of the observed magnetic transitions. We demonstrate that even in case of local distortions the symmetry of the undistorted crystal is recovered for magnetic and for quadratic magnetoelectric susceptibilities.
We have used resistivity measurements to study the magnetic phase diagram of the itinerant antiferromagnet FeGe_2 in the temperature range from 0.3->300 K in magnetic fields up to 16 T. In contrast to theoretical predictions, the incommensurate spin density wave phase is found to be stable at least up to 16 T, with an estimated critical field mu _0H_c of ~ 30 T. We have also studied the low temperature magnetoresistance in the [100], [110], and [001] directions. The transverse magnetoresistance is well described by a power law for magnetic fields above 1 T with no saturation observed at high fields. We discuss our results in terms of the magnetic structure and the calculated electronic bandstructure of FeGe_2. We have also observed, for the first time in this compound, Shubnikov-de Haas oscillations in the transverse magnetoresistance with a frequency of 190 +- 10 T for a magnetic field along [001].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا