ﻻ يوجد ملخص باللغة العربية
We consider the application of endpoint techniques to the problem of mass determination for new particles produced at a hadron collider, where these particles decay to an invisible particle of unknown mass and one or more visible particles of known mass. We also consider decays of these types for pair-produced particles and in each case consider situations both with and without initial state radiation. We prove that, in most (but not all) cases, the endpoint of an appropriate transverse mass observable, considered as a function of the unknown mass of the invisible particle, has a kink at the true value of the invisible particle mass. The co-ordinates of the kink yield the masses of the decaying particle and the invisible particle. We discuss the prospects for implementing this method at the LHC.
It is generally accepted that experiments at an e+e- linear colliders will be able to extract the masses of the selectron as well as the associated sneutrinos with a precision of ~ 1% by determining the kinematic end points of the energy spectrum of
We present a method to compute off-shell effects for processes involving resonant particles at hadron colliders with the possibility to include realistic cuts on the decay products. The method is based on an effective theory approach to unstable part
This document aims to provide an assessment of the potential of future colliding beam facilities to perform Higgs boson studies. The analysis builds on the submissions made by the proponents of future colliders to the European Strategy Update process
We develop techniques to determine the mass scale of invisible particles pair-produced at hadron colliders. We employ the constrained mass variable m_2C, which provides an event-by-event lower-bound to the mass scale given a mass difference. We compl
We further develop the constrained mass variable techniques to determine the mass scale of invisible particles pair-produced at hadron colliders. We introduce the constrained mass variable M_3C which provides an event-by-event lower bound and upper b