ﻻ يوجد ملخص باللغة العربية
It is generally accepted that experiments at an e+e- linear colliders will be able to extract the masses of the selectron as well as the associated sneutrinos with a precision of ~ 1% by determining the kinematic end points of the energy spectrum of daughter electrons produced in their two body decays to a lighter neutralino or chargino. Recently, it has been suggested that by studying the energy dependence of the cross section near the production threshold, this precision can be improved by an order of magnitude, assuming an integrated luminosity of 100 fb^-1. It is further suggested that these threshold scans also allow the masses of even the heavier second and third generation sleptons and sneutrinos to be determined to better than 0.5%. We re-examine the prospects for determining sneutrino masses. We find that the cross sections for the second and third generation sneutrinos are too small for a threshold scan to be useful. An additional complication arises because the cross section for sneutrino pair to decay into any visible final state(s) necessarily depends on an unknown branching fraction, so that the overall normalization in unknown. This reduces the precision with which the sneutrino mass can be extracted. We propose a different strategy to optimize the extraction of m(tilde{ u}_mu) and m(tilde{ u}_tau) via the energy dependence of the cross section. We find that even with an integrated luminosity of 500 fb^-1, these can be determined with a precision no better than several percent at the 90% CL. We also examine the measurement of m(tilde{ u}_e) and show that it can be extracted with a precision of about 0.5% (0.2%) with an integrated luminosity of 120 fb^-1 (500 fb^-1).
There are many models with non-universal soft SUSY breaking sfermion mass parameters at the grand unification scale. Even in the mSUGRA model scalar mass unification might occur at a scale closer to M_Planck, and renormalization effects would cause a
In gauge-Higgs unification the 4D Higgs boson appears as a part of the fifth dimensional component of gauge potentials, namely as a fluctuation mode of the Aharonov-Bohm phase in the extra dimension. The $SO(5) times U(1) times SU(3)$ gauge-Higgs uni
% insert abstract here We study the production of the Higgs bosons predicted in the Minimal Supersymmetric extension of the Standard Model $(h^0, H^0, A^0, H^pm)$, with the reactions $e^{+}e^{-}to bbar b h^0 (H^0, A^0)$, and $e^+e^-to tau^-bar u_tau
We study the phenomenology of a Standard Model (SM) extension with two charged singlet scalars and three right handed (RH) neutrinos at an electron-positron collider. In this model, the neutrino mass is generated radiatively at three-loop, the lighte
A short review of the history and a slide-show of QCD tests in $e^+e^-$ annihilation is given. The world summary of measurements of $alpha_s$ is updated.