ترغب بنشر مسار تعليمي؟ اضغط هنا

The Precision Determination of Invisible-Particle Masses at the LHC

161   0   0.0 ( 0 )
 نشر من قبل Mario A. Serna
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop techniques to determine the mass scale of invisible particles pair-produced at hadron colliders. We employ the constrained mass variable m_2C, which provides an event-by-event lower-bound to the mass scale given a mass difference. We complement this variable with a new variable m_2C,UB which provides an additional upper bound to the mass scale, and demonstrate its utility with a realistic case study of a supersymmetry model. These variables together effectively quantify the `kink in the function Max m_T2 which has been proposed as a mass-determination technique for collider-produced dark matter. An important advantage of the m_2C method is that it does not rely simply on the position at the endpoint, but it uses the additional information contained in events which lie far from the endpoint. We found the mass by comparing the HERWIG generated m_2C distribution to ideal distributions for different masses. We find that for the case studied, with 100 fb^-1 of integrated luminosity (about 400 signal events), the invisible particles mass can be measured to a precision of 4.1 GeV. We conclude that this techniques precision and accuracy is as good as, if not better than, the best known techniques for invisible-particle mass-determination at hadron colliders.

قيم البحث

اقرأ أيضاً

We further develop the constrained mass variable techniques to determine the mass scale of invisible particles pair-produced at hadron colliders. We introduce the constrained mass variable M_3C which provides an event-by-event lower bound and upper b ound to the mass scale given the two mass differences between the lightest three new particle states. This variable is most appropriate for short symmetric cascade decays involving two-body decays and on-shell intermediate states which end in standard-model particles and two dark-matter particles. An important feature of the constrained mass variables is that they do not rely simply on the position of the end point but use the additional information contained in events which lie far from the end point. To demonstrate our method we study the supersymmetric model SPS 1a. We select cuts to study events with two Neutralino_2 each of which decays to Neutralino_1, and two opposite-sign same-flavor (OSSF) charged leptons through an intermediate on-shell slepton. We find that with 300 fb^-1 of integrated luminosity the invisible-particle mass can be measured to M=96.4 +/- 2.4 GeV. Combining fits to the shape of the M_3C constrained mass variable distribution with the max m_ll edge fixes the mass differences to +/- 0.2 GeV.
In case of the discovery of supersymmetry at the LHC, the goal will be to identify the underlying theory, its fundamental parameters, and the masses of SUSY particles. We followed here the approach to reconstruct the decay chains in SUSY events under the assumption of common intermediate masses. These masses cannot be extracted from each event because of the unmeasured LSP momenta in case of R-parity conservation. But an ensemble of events can be over-constrained, if the decay chains are long enough, such that enough mass constraints are available. Here, we present a new method combining a) a SUSY mass scan, b) a kinematic fitting based on a genetic algorithm for decay chain reconstruction, and c) the usage of angular decay information to suppress the background from other SUSY processes. Taking into account the full combinatorial background and experimental resolutions in the most difficult case of the fully hadronic decay mode, we demonstrate, within one SUSY scenario, that this method can be used to derive a probability map of the SUSY parameter space.
Assuming flat universal extra dimensions, we demonstrate that for a light Higgs boson the process $ppto W^*W^* +X to Higgs,graviscalars +X to invisible+X$ will be observable at the $5 sigma$ level at the LHC for the portion of the Higgs-graviscalar m ixing ($xi$) and effective Planck mass ($M_D$) parameter space where channels relying on visible Higgs decays fail to achieve a $5 sigma$ signal. Further, we show that even for very modest values of $xi$ the invisible decay signal probes to higher $M_D$ than does the ($xi$-independent) jets/$gam$ + missing energy signal from graviton radiation. We also discuss various effects, such as Higgs decay to two graviscalars, that could become important when $m_h/M_D$ is of order 1.
The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neu trino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of mu+ E_T jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.
We review the study of the charged Higgs and top quark associated production at the LHC with the presence of an additional scalar doublet. Top quark spin effects are related to the Higgs fermion couplings through this process. The angular distributio ns with respect to top quark spin turn out to be distinctive observables to study the $Htb$ interaction in different models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا