ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing phase coexistence and stabilization of the spin-ordered ferrimagnetic state by Calcium addition in the YBa_{1-x}Ca_{x}Co_{2}O_{5.5} layered cobaltites using neutron diffraction

142   0   0.0 ( 0 )
 نشر من قبل Gabriela Aurelio
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we study the effects of a partial substitution of Ba with the smaller cation Ca in the layered cobaltites YBaCo_2O_{5+delta} for delta approx 0.5. Neutron thermodiffractograms are reported for the compounds YBa_{0.95}Ca_{0.05}Co_2O_{5.5} (x_{Ca}=0.05) and YBa_{0.90}Ca_{0.10}Co_2O_{5.5} (x_{Ca}=0.10) in the temperature range 20 K leq T leq 300 K, as well as high resolution neutron diffraction experiments at selected temperatures for the samples x_{Ca}=0.05, x_{Ca}=0.10 and the parent compound x_{Ca}=0. We have found the magnetic properties to be strongly affected by the cationic substitution. Although the 122 perovskite structure seems unaffected by Ca addition, the magnetic arrangements of Co ions are drastically modified: the antiferromagnetic (AFM) long-range order is destroyed, and a ferrimagnetic phase with spin state order is stabilized below T sim 290 K. For the sample with x_{Ca}=0.05 a fraction of AFM phase coexists with the ferrimagnetic one below T sim 190 K, whereas for x_{Ca}=0.10 the AFM order is completely lost. The systematic refinement of the whole series has allowed for a better understanding of the observed low-temperature diffraction patterns of the parent compound, YBaCo_2O_{5.5}, which had not yet been clarified. A two-phase scenario is proposed for the x_{Ca}=0 compound which is compatible with the phase coexistence observed in the x_{Ca}=0.05 sample.



قيم البحث

اقرأ أيضاً

The magnetic properties of polycrystalline Tb(Co_{x}Ni_{1-x})_{2}B_{2}C (x=0.2,0.4,0.6,0.8) samples were probed by magnetization, specific heat, ac susceptibility, and resistivity techniques. For x{ eq}0.4, the obtained curves are consistent with the features expected for the corresponding magnetic modes, namely k_{1}=(0.55,0,0) at x=0; k_{2}=([nicefrac] icefrac{1}{2}</LaTeX>,0,[nicefrac]<LaTeX> icefrac{1}{2}) at x= 0.2; k_{3}=(0,0,[nicefrac] icefrac{1}{3}) at x= 0.6, and k_{4}=(0,0,0) at x= 0.8 and 1. For x=0.4, even though the neutron diffraction indicates a k_{2} mode, but with a reduced magnetic moment, the magnetization, the ac susceptibility, and resistivity indicate two magnetic events; furthermore, deviation from Curie-Weiss behavior is observed below 150 K for this sample. These features, together with the evolution of both magnetic moment and critical temperature, are attributed to an interplay between competing magnetic couplings; for the particular x=0.4 case, additional factors such as crystalline electric field effects may be in operation.
We present a muon-spin relaxation investigation of the Ising chain magnet Ca_{3}Co_{2-x}Mn_{x}O_{6} (x~0.95). We find dynamic spin fluctuations persisting down to the lowest measured temperature of 1.6 K. The previously observed transition at around T ~18 K is interpreted as a subtle change in dynamics for a minority of the spins coupling to the muon that we interpret as spins locking into clusters. The dynamics of this fraction of spins freeze below a temperature T_{SF}~8 K, while a majority of spins continue to fluctuate. An explanation of the low temperature behavior is suggested in terms of the predictions of the anisotropic next-nearest-neighbor Ising model.
Recent advances in antiferromagnetic spin dynamics using rare-earth (RE) and transition-metal (TM) ferrimagnets have attracted much interest for spintronic devices with a high speed and density. In this study, the spin wave properties in the magnetos tatic backward volume mode and surface mode in RE-TM ferrimagnetic $Gd_{x}Co_{1-x}$ films with various composition x are investigated using spin wave spectroscopy. The obtained group velocity and attenuation length are well explained by the ferromagnet-based spin wave theory when the composition of $Gd_{x}Co_{1-x}$ is far from the compensation point.
We present the electronic structure of Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3} investigated by high-resolution photoemission spectroscopy. In the vicinity of Fermi level, it was found that the electronic structure were composed of a Cr 3d local state with the t_{2g}^{3} configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co$_{1-x}$Fe$_{x}$)$_{y}$As$_{2}$, $0leq xleq1$, $1.86leq y leq 2$, are presented and reveal that A-type antiferromagnetic or der, with ordered moments lying along the $c$ axis, persists for $xlesssim0.12(1)$. The antiferromagnetic order is smoothly suppressed with increasing $x$, with both the ordered moment and N{e}el temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for $xleq0.25$, nor does ferromagnetic order for $x$ up to at least $x=0.104$, and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo$_{1.86}$As$_{2}$ to the tetragonal (T) phase of CaFe$_{2}$As$_{2}$ occurs. These results suggest that hole doping CaCo$_{1.86}$As$_{2}$ has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا