ترغب بنشر مسار تعليمي؟ اضغط هنا

Optics of spin-1 particles from gravity-induced phases

47   0   0.0 ( 0 )
 نشر من قبل G. Papini
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Maxwell and Maxwell-de Rham equations can be solved exactly to first order in an external gravitational field. The gravitational background induces phases in the wave functions of spin-1 particles. These phases yield the optics of the particles without requiring any thin lens approximation.

قيم البحث

اقرأ أيضاً

The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with $SO(m,n)$ such that $m+n =5$ and $min{0,1,2}$ as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inonu-Wigner contraction in its infrared sector. As a consequence, the $SO(m,n)$ algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a $Lambda$CDM model. We argue that $SO(m,n)$ induced gravities are promising effective theories to describe the early phase of the universe.
Both massless light ray and objects with nonzero mass experience trajectory bending in a gravitational field. In this work the bending of trajectories of massive objects in a Schwarzschild spacetime and the corresponding gravitational lensing (GL) ef fects are studied. A particle sphere for Schwarzschild black hole (BH) is found with its radius a simple function of the particle velocity and proportional to the BH mass. A single master formula for both the massless and massive particle bending angle is found, in the form of an elliptic function depending only on the velocity and impact parameter. This bending angle is expanded in both large and small velocity limits and large and small impact parameter limits. The corresponding deflection angle for weak and strong GL of massive particles are analyzed, and their corrections to the light ray deflection angles are obtained. The dependence of the deflection angles on the source angle and the particle speed is investigated. Finally we discuss the potential applications of the results in hypervelocity star observations and in determining mass/mass hierarchy of slow particles/objects.
We study motion of test particles and photons in the vicinity of (2+1) dimensional Gauss-Bonnet (GB) BTZ black hole. We find that the presence of the coupling constant serves as an attractive gravitational charge, shifting the innermost stable circul ar orbits outward with respect to the one for this theory in 4 dimensions. Further we consider the gravitational lensing, to test the GB gravity in (2+1) dimensions and show that the presence of GB parameter causes the bending angle to grow up first with the increase of the inverse of closest approach distance, $u_0$, then have its maximum value for specific $u_0^*$, and then reduce until zero. We also show that increase in the value of the GB parameter makes the bending angle smaller and the increase in the absolute value of the negative cosmological constant produces opposite effect on this angle.
90 - A.T.Filippov 1996
Integrable models of dilaton gravity coupled to electromagnetic and scalar matter fields in dimensions 1+1 and 0+1 are briefly reviewed. The 1+1 dimensional integrable models are either solved in terms of explicit quadratures or reduced to the classi cally integrable Liouville equation. The 0+1 dimensional integrable models emerge as sectors in generally non integrable 1+1 dimensional models and can be solved in terms of explicit quadratures. The Hamiltonian formulation and the problem of quantizing are briefly discussed. Applications to gravity in any space - time dimension are outlined and a generalization of the so called `no - hair theorem is proven using local properties of the Lagrange equations for a rather general 1+1 dimensional dilaton gravity coupled to matter. This report is based on the paper hep-th/9605008 but some simplifications, corrections and new results are added.
We revisit a collapsing pre-big-bang model of the universe to study with detail the non-perturbative quantum dynamics of the dispersal scalar field whose dynamics becomes from the dynamical foliation of test massless scalar field $phi$ on a 5D Rieman n-flat metric, such that the extra space-like coordinate is noncompact. The important result here obtained is that the evolution of the system, which is described thorough the equation of state has the unique origin in the quantum contributions of the effective 4D scalar field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا