ﻻ يوجد ملخص باللغة العربية
The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with $SO(m,n)$ such that $m+n=5$ and $min{0,1,2}$ as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inonu-Wigner contraction in its infrared sector. As a consequence, the $SO(m,n)$ algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a $Lambda$CDM model. We argue that $SO(m,n)$ induced gravities are promising effective theories to describe the early phase of the universe.
We review and extend the Gauge Vectors-Tensor gravity: a covariant theory of gravity composed of a metric and gauge fields, leading to simple second order partial differential equations of motion, whose Newtonian and strong limits coincide to those o
I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological role of a vector field in the framework of a string/brane cosmological model. I will then present the resolu
We show that gravity and matter fields are generically entangled, as a consequence of the local Poincare symmetry. First, we present a general argument, applicable to any particular theory of quantum gravity with matter, by performing the analysis in
We make a critical review of the semiclassical interpretation of quantum cosmology and emphasise that it is not necessary to consider that a concept of time emerges only when the gravitational field is (semi)classical. We show that the usual results
The article communicates an alternative route to suffice the late-time acceleration considering a bulk viscous fluid with viscosity coefficient $zeta =zeta _{0}+ zeta _{1} H + zeta _{2} H^{2}$, where $zeta _{0}, zeta _{1}, zeta _{2}$ are constants in