ﻻ يوجد ملخص باللغة العربية
Integrable models of dilaton gravity coupled to electromagnetic and scalar matter fields in dimensions 1+1 and 0+1 are briefly reviewed. The 1+1 dimensional integrable models are either solved in terms of explicit quadratures or reduced to the classically integrable Liouville equation. The 0+1 dimensional integrable models emerge as sectors in generally non integrable 1+1 dimensional models and can be solved in terms of explicit quadratures. The Hamiltonian formulation and the problem of quantizing are briefly discussed. Applications to gravity in any space - time dimension are outlined and a generalization of the so called `no - hair theorem is proven using local properties of the Lagrange equations for a rather general 1+1 dimensional dilaton gravity coupled to matter. This report is based on the paper hep-th/9605008 but some simplifications, corrections and new results are added.
A class of explicitly integrable models of 1+1 dimensional dilaton gravity coupled to scalar fields is described in some detail. The equations of motion of these models reduce to systems of the Liouville equations endowed with energy and momentum con
Within a first-order framework, we comprehensively examine the role played by boundary conditions in the canonical formulation of a completely general two-dimensional gravity model. Our analysis particularly elucidates the perennial themes of mass an
A new class of integrable two-dimensional dilaton gravity theories, in which scalar matter fields satisfy the Toda equations, is proposed. The simplest case of the Toda system is considered in some detail, and on this example we outline how the gener
We report on the results of a study of the motion of a four particle non-relativistic one-dimensional self-gravitating system. We show that the system can be visualized in terms of a single particle moving within a potential whose equipotential surfa
We study the application of AdS/CFT duality to longitudinal boost invariant Bjorken expansion of QCD matter produced in ultrarelativistic heavy ion collisions. As the exact (1+4)-dimensional bulk solutions for the (1+3)-dimensional boundary theory ar