ترغب بنشر مسار تعليمي؟ اضغط هنا

High quality factor mechanical resonance in a silicon nanowire

159   0   0.0 ( 0 )
 نشر من قبل Sergey Kafanov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabricated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated. Resonance frequencies of the fundamental mode were measured at a temperature of $20,mathrm{mK}$ for nanowires of various sizes using the magnetomotive scheme. The measured values of the resonance frequency agree with the estimates obtained from the Euler-Bernoulli theory. The measured internal quality factor of the $5,mathrm{mu m}$-long resonator, $3.62times10^4$, exceeds the corresponding values of similar resonators investigated at higher temperatures. The structures presented can be used as mass sensors with an expected sensitivity $sim 6 times 10^{-20},mathrm{g},mathrm{Hz}^{-1/2}$.

قيم البحث

اقرأ أيضاً

We have observed the transversal vibration mode of suspended carbon nanotubes at millikelvin temperatures by measuring the single-electron tunneling current. The suspended nanotubes are actuated contact-free by the radio frequency electric field of a nearby antenna; the mechanical resonance is detected in the time-averaged current through the nanotube. Sharp, gate-tuneable resonances due to the bending mode of the nanotube are observed, combining resonance frequencies of up to u_0 = 350 MHz with quality factors above Q = 10^5, much higher than previously reported results on suspended carbon nanotube resonators. The measured magnitude and temperature dependence of the Q-factor shows a remarkable agreement with the intrinsic damping predicted for a suspended carbon nanotube. By adjusting the RF power on the antenna, we find that the nanotube resonator can easily be driven into the non-linear regime.
74 - M. Will , M. Hamer , M. Muller 2018
Ultralight mechanical resonators based on low-dimensional materials are well suited as exceptional transducers of minuscule forces or mass changes. However, the low dimensionality also provides a challenge to minimize resistive losses and heating. He re, we report on a novel approach that aims to combine different 2D materials to tackle this challenge. We fabricated a heterostructure mechanical resonator consisting of few layers of niobium diselenide (NbSe$_2$) encapsulated by two graphene sheets. The hybrid membrane shows high quality factors up to 245000 at low temperatures, comparable to the best few-layer graphene mechanical resonators. In contrast to few-layer graphene resonators, the device shows reduced electrical losses attributed to the lower resistivity of the NbSe$_2$ layer. The peculiar low temperature dependence of the intrinsic quality factor points to dissipation over two-level systems which in turn relax over the electronic system. Our high sensitivity readout is enabled by coupling the membrane to a superconducting cavity which allows for the integration of the hybrid mechanical resonator as a sensitive and low loss transducer in future quantum circuits.
Hybrid spin-mechanical systems are a promising platform for future quantum technologies. Usually they require application of additional microwave fields to project integer spin to a readable state. We develop a theory of optically detected spin-mecha nical resonance associated with half-integer spin defects in silicon carbide (SiC) membranes. It occurs when a spin resonance frequency matches a resonance frequency of a mechanical mode, resulting in a shortening of the spin relaxation time through resonantly enhanced spin-phonon coupling. The effect can be detected as an abrupt reduction of the photoluminescence intensity under optical pumping without application of microwave fields. We propose all-optical protocols based on such spin-mechanical resonance to detect external magnetic fields and mass with ultra-high sensitivity. We also discuss room-temperature nonlinear effects under strong optical pumping, including spin-mediated cooling and heating of mechanical modes. Our approach suggests a new concept for quantum sensing using spin-optomechanics.
Milligram-scale resonators have been shown to be suitable for the creation of 3-mode optoacoustic parametric amplifiers, based on a phenomena first predicted for advanced gravitational-wave detectors. To achieve practical optoacoustic parametric ampl ification, high quality factor resonators are required. We present millimetre-scale silicon resonators designed to exhibit a torsional vibration mode with a frequency in the 10^5 - 10^6 Hz range, for observation of 3-mode optoacoustic interactions in a compact table-top system. Our design incorporates an isolation stage and minimizes the acoustic loss from optical coating. We observe a quality factor of 7.5 x 10^5 for a mode frequency of 401.5 kHz, at room temperature and pressure of 10^-3 Pa. We confirmed the mode shape by mapping the amplitude response across the resonator and comparing to finite element modelling. This study contributes towards the development of 3-mode optoacoustic parametric amplifiers for use in novel high-sensitivity signal transducers and quantum measurement experiments.
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effect in practice. Here we point out that there is an upper limit to the thermoelectric power factor of non-ballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasi-ballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit predicts that a competitive power factor, on the order of mW/m-K^2, can be achieved by a single 1D electronic channel in state-of-the-art semiconductor nanowires with small cross-section and high crystal quality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا