ﻻ يوجد ملخص باللغة العربية
Nucleation of a solid in solid is initiated by the appearance of distinct dynamical heterogeneities, consisting of `active particles whose trajectories show an abrupt transition from ballistic to diffusive, coincident with the discontinuous transition in microstructure from a {it twinned martensite} to {it ferrite}. The active particles exhibit intermittent jamming and flow. The nature of active particle trajectories decides the fate of the transforming solid -- on suppressing single particle diffusion, the transformation proceeds via rare string-like correlated excitations, giving rise to twinned martensitic nuclei. These string-like excitations flow along ridges in the potential energy topography set up by inactive particles. We characterize this transition using a thermodynamics in the space of trajectories in terms of a dynamical action for the active particles confined by the inactive particles. Our study brings together the physics of glass, jamming, plasticity and solid nucleation.
We study the nucleation dynamics of a model solid state transformation and the criterion for microstructure selection using a molecular dynamics (MD) simulation. Our simulations show a range of microstructures depending on the depth of quench. We clo
The application of stress to multiphase solid-liquid systems often results in morphological instabilities. Here we propose a solid-solid phase transformation model for roughening instability in the interface between two porous materials with differen
We present analytical results and kinetic Monte Carlo simulations for the mobility and microscopic structure of solid-on-solid (SOS) interfaces driven far from equilibrium by an external force, such as an applied field or (electro)chemical potential
The classical motion of gliding dislocation lines in slip planes of crystalline solid helium leads to plastic deformation even at temperatures far below the Debye temperature and can affect elastic properties. In this work we argue that the gliding o
We implement the GW space-time method at finite temperatures, in which the Greens function G and the screened Coulomb interaction W are represented in the real space on a suitable mesh and in imaginary time in terms of Chebyshev polynomials, paying p