ترغب بنشر مسار تعليمي؟ اضغط هنا

Rate of equilibration of a one-dimensional Wigner crystal

161   0   0.0 ( 0 )
 نشر من قبل Konstantin Matveev
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a system of one-dimensional spinless particles interacting via long-range repulsion. In the limit of strong interactions the system is a Wigner crystal, with excitations analogous to phonons in solids. In a harmonic crystal the phonons do not interact, and the system never reaches thermal equilibrium. We account for the anharmonism of the Wigner crystal and find the rate at which it approaches equilibrium. The full equilibration of the system requires umklapp scattering of phonons, resulting in exponential suppression of the equilibration rate at low temperatures.



قيم البحث

اقرأ أيضاً

126 - K. A. Matveev , A. V. Andreev , 2010
Equilibration of a one-dimensional system of interacting electrons requires processes that change the numbers of left- and right-moving particles. At low temperatures such processes are strongly suppressed, resulting in slow relaxation towards equili brium. We study this phenomenon in the case of spinless electrons with strong long-range repulsion, when the electrons form a one-dimensional Wigner crystal. We find the relaxation rate by accounting for the Umklapp scattering of phonons in the crystal. For the integrable model of particles with inverse-square repulsion, the relaxation rate vanishes.
In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. We demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of elementary excitations, which can be identified with solitons in the classical limit. We compute the corresponding excitation spectrum and argue that the solitons have a parametrically small decay rate at low energies. We discuss implications of our results for the behavior of the dynamic structure factor.
The spatial Fourier spectrum of the electron density distribution in a finite 1D system and the distribution function of electrons over single-particle states are studied in detail to show that there are two universal features in their behavior, whic h characterize the electron ordering and the deformation of Wigner crystal by boundaries. The distribution function has a $delta$-like singularity at the Fermi momentum $k_F$. The Fourier spectrum of the density has a step-like form at the wavevector $2k_F$, with the harmonics being absent or vanishing above this threshold. These features are found by calculations using exact diagonalization method. They are shown to be caused by Wigner ordering of electrons, affected by the boundaries. However the common Luttinger liquid model with open boundaries fails to capture these features, because it overestimates the deformation of the Wigner crystal. An improvement of the Luttinger liquid model is proposed which allows one to describe the above features correctly. It is based on the corrected form of the density operator conserving the particle number.
Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL) which has now been observed in a numbe r of experimental systems. Interactions are even more important at low carrier density, and in the limit when the long-ranged Coulomb potential is the dominant energy scale, the electron liquid is expected to become a periodically ordered solid known as the Wigner crystal. In 1D, the Wigner crystal has been predicted to exhibit novel spin and magnetic properties not present in an ordinary LL. However, despite recent progress in coupled quantum wires, unambiguous experimental demonstration of this state has not been possible due to the role of disorder. Here, we demonstrate using low-temperature single-electron transport spectroscopy that a hole gas in low-disorder carbon nanotubes with a band gap is a realization of the 1D Wigner crystal. Our observation can lead to unprecedented control over the behavior of the spatially separated system of carriers, and could be used to realize solid state quantum computing with long coherence times.
298 - Junren Shi , Wencheng Ji 2016
Conventional wisdom had long held that a composite particle behaves just like an ordinary Newtonian particle. In this paper, we derive the effective dynamics of a type-I Wigner crystal of composite particles directly from its microscopic wave functio n. It indicates that the composite particles are subjected to a Berry curvature in the momentum space as well as an emergent dissipationless viscosity. Therefore, contrary to the general belief, composite particles follow the more general Sundaram-Niu dynamics instead of the ordinary Newtonian one. We show that the presence of the Berry curvature is an inevitable feature for a dynamics consistent with the dipole picture of composite particles and Kohns theorem. Based on the dynamics, we determine the dispersions of magneto-phonon excitations numerically. We find an emergent magneto-roton mode which signifies the composite-particle nature of the Wigner crystal. It occurs at frequencies much lower than the magnetic cyclotron frequency and has a vanishing oscillator strength in the long wavelength limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا