ترغب بنشر مسار تعليمي؟ اضغط هنا

A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems

64   0   0.0 ( 0 )
 نشر من قبل Michael Rauch
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have conducted a long slit search for low surface brightness Lyman-alpha emitters at redshift 2.67 < z < 3.75. A 92 hour long exposure with VLT/FORS2 down to a 1-sigma surface brightness detection limit of 8x10^-20 erg/cm2/s/sqarcsec yielded a sample of 27 single line emitters with fluxes of a few times 10^-18 erg/s/cm2. We present arguments that most objects are indeed Lyman-alpha. The large comoving number density, the large covering factor, dN/dz ~ 0.2-1, and the often extended Lyman-alpha emission suggest that the emitters be identified with the elusive host population of damped Lyman-alpha systems (DLAS) and high column density Lyman limit systems. A small inferred star formation rate, perhaps supplanted by cooling radiation, appears to energetically dominate the Lyman-alpha emission, and is consistent with the low metallicity, low dust content, and theoretically inferred low masses of DLAS, and with the relative lack of success of earlier searches for their optical counterparts. (abridged)

قيم البحث

اقرأ أيضاً

210 - Patrick Petitjean 1998
It is difficult to describe in a few pages the numerous specific techniques used to study absorption lines seen in QSO spectra and to review even rapidly the field of research based on their observation and analysis. What follows is therefore a pale introduction to the invaluable contribution of these studies to our knowledge of the gaseous component of the Universe and its cosmological evolution. A rich bibliography is given which, although not complete, will be hopefully useful for further investigations. Emphasis will be laid on the impact of this field on the question of the formation and evolution of galaxies.
We present new imaging and spectroscopic observations of the fields of five QSOs with very strong intervening CaII absorption systems at redshifts z<0.5 selected from the Sloan Digital Sky Survey. Recent studies of these very rare absorbers indicate that they may be related to damped Lyman alpha systems (DLAs). In all five cases we identify a galaxy at the redshift of the CaII system with impact parameters up to ~24 kpc. In four out of five cases the galaxies are luminous (L ~L*), metal-rich (Z ~Zsun), massive (velocity dispersion, sigma ~100 km/s) spirals. Their star formation rates, deduced from Halpha emission, are high, in the range SFR = 0.3 - 30 Msun/yr. In our analysis, we paid particular attention to correcting the observed emission line fluxes for stellar absorption and dust extinction. We show that these effects are important for a correct SFR estimate; their neglect in previous low-z studies of DLA-selected galaxies has probably led to an underestimate of the star formation activity in at least some DLA hosts. We discuss possible links between CaII-selected galaxies and DLAs and outline future observations which will help clarify the relationship between these different classes of QSO absorbers.
We investigate the variation of the ratio of the equivalent widths of the FeII$lambda$2600 line to the MgII$lambdalambda$2796,2803 doublet as a function of redshift in a large sample of absorption lines drawn from the JHU-SDSS Absorption Line Catalog . We find that despite large scatter, the observed ratio shows a trend where the equivalent width ratio $mathcal{R}equiv W_{rm FeII}/W_{rm MgII}$ decreases monotonically with increasing redshift $z$ over the range $0.55 le z le 1.90$. Selecting the subset of absorbers where the signal-to-noise ratio of the MgII equivalent width $W_{rm MgII}$ is $ge$3 and modeling the equivalent width ratio distribution as a gaussian, we find that the mean of the gaussian distribution varies as $mathcal{R}propto (-0.045pm0.005)z$. We discuss various possible reasons for the trend. A monotonic trend in the Fe/Mg abundance ratio is predicted by a simple model where the abundances of Mg and Fe in the absorbing clouds are assumed to be the result of supernova ejecta and where the cosmic evolution in the SNIa and core-collapse supernova rates is related to the cosmic star-formation rate. If the trend in $mathcal{R}$ reflects the evolution in the abundances, then it is consistent with the predictions of the simple model.
225 - Patrick Petitjean 1998
Molecules dominate the cooling function of neutral metal-poor gas at high density. Observation of molecules at high redshift is thus an important tool toward understanding the physical conditions prevailing in collapsing gas. Up to now, detections ar e sparse because of small filling factor and/or sensitivity limitations. However, we are at an exciting time where new capabilities offer the propect of a systematic search either in absorption using the UV Lyman-Werner H2 bands or in emission using the CO emission lines redshifted in the sub-millimeter.
We discuss a sample of 29 AGN (16 narrow-lined and 13 broad-lined) discovered in a spectroscopic survey of ~1000 star-forming Lyman-break galaxies (LBGs) at z~3. Reaching apparent magnitudes of R_{AB}=25.5, the sample includes broad-lined AGN approxi mately 100 times less UV-luminous than most surveys to date covering similar redshifts, and the first statistical sample of UV/optically-selected narrow-lined AGN at high redshift. The fraction of objects in our survey with clear evidence for AGN activity is ~3%. A substantial fraction, perhaps even most, of these objects would not have been detected in even the deepest existing X-ray surveys. We argue that these AGN are plausibly hosted by the equivalent of LBGs. The UV luminosities of the broad-lined AGN in the sample are compatible with Eddington-limited accretion onto black holes that satisfy the locally determined M_{BH} versus M_{bulge} relation given estimates of the stellar masses of LBGs. The clustering properties of the AGN are compatible with their being hosted by objects similar to LBGs. The implied lifetime of the active AGN phase in LBGs, if it occurs some time during the active star-formation phase, is ~10^7 years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا