ترغب بنشر مسار تعليمي؟ اضغط هنا

The host galaxies of strong CaII QSO absorption systems at z<0.5

212   0   0.0 ( 0 )
 نشر من قبل Berkeley Zych
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new imaging and spectroscopic observations of the fields of five QSOs with very strong intervening CaII absorption systems at redshifts z<0.5 selected from the Sloan Digital Sky Survey. Recent studies of these very rare absorbers indicate that they may be related to damped Lyman alpha systems (DLAs). In all five cases we identify a galaxy at the redshift of the CaII system with impact parameters up to ~24 kpc. In four out of five cases the galaxies are luminous (L ~L*), metal-rich (Z ~Zsun), massive (velocity dispersion, sigma ~100 km/s) spirals. Their star formation rates, deduced from Halpha emission, are high, in the range SFR = 0.3 - 30 Msun/yr. In our analysis, we paid particular attention to correcting the observed emission line fluxes for stellar absorption and dust extinction. We show that these effects are important for a correct SFR estimate; their neglect in previous low-z studies of DLA-selected galaxies has probably led to an underestimate of the star formation activity in at least some DLA hosts. We discuss possible links between CaII-selected galaxies and DLAs and outline future observations which will help clarify the relationship between these different classes of QSO absorbers.



قيم البحث

اقرأ أيضاً

147 - Paul Hewett 2007
We present K-band imaging of fields around 30 strong CaII absorption line systems, at 0.7<z<1.1, three of which are confirmed Damped Lyman-alpha systems. A significant excess of galaxies is found within 60 (~50kpc) from the absorber line-of-sight. Th e excess galaxies are preferentially luminous compared to the population of field galaxies. A model in which field galaxies possess a luminosity-dependent cross-section for CaII absorption of the form (L/L*)^0.7 reproduces the observations well. The luminosity-dependent cross-section for the CaII absorbers appears to be significantly stronger than the established (L/L*)^0.4 dependence for MgII absorbers. The associated galaxies lie at large physical distances from the CaII-absorbing gas; we find a mean impact parameter of 24kpc (H0=70kmsMpc). Combined with the observed number density of CaII absorbers the large physical separations result in an inferred filling factor of only ~10 per cent. The physical origin of the strong CaII absorption remains unclear, possible explanations vary from very extended disks of the luminous galaxies to associated dwarf galaxy neighbours, remnants of outflows from the luminous galaxies, or tidal debris from cannibalism of smaller galaxies.
67 - Scott Croom 2004
We present results of a Gemini adaptive optics (AO) imaging program to investigate the host galaxies of typical QSOs at z~2. Our aim is to study the host galaxies of typical, L*_qso QSOs at the epoch of peak QSO and star formation activity. The large database of faint QSOs provided by the 2dF QSO Redshift Survey allows us to select a sample of QSOs at z=1.75-2.5 which have nearby (<12 arcsecond separation) bright stars suitable for use as AO guide stars. We have observed a sample of 9 QSOs. The images of these sources have AO corrected full-width at half-maximum of between 0.11 and 0.25 arcseconds. We use multiple observations of point spread function (PSF) calibration star pairs in order to quantify any uncertainty in the PSF. We then factored these uncertainties into our modelling of the QSO plus host galaxy. In only one case did we convincingly detect a host (2QZ J133311.4+001949, at z=1.93). This host galaxy has K=18.5+-0.2 mag with a half-light radius, r_e=0.55+-0.1, equivalent to ~3L*_gal assuming a simple passively evolving model. From detailed simulations of our host galaxy modelling process, we find that for four of our targets we should be sensitive to host galaxies that are equivalent to ~2L*_gal (passively evolved). Our non-detections therefore place tight constraints on the properties of L*_qso QSO host galaxies, which can be no brighter (after allowing for passive evolution) than the host galaxies of L*_qso AGN at low redshift, although the QSOs themselves are a factor of ~50 brighter. This implies that either the fueling efficiency is much greater at high redshift, or that more massive black holes are active at high redshift.
158 - R. Dutta , R. Srianand , N. Gupta 2016
We present the results from our search for HI 21-cm absorption in a sample of 16 strong FeII systems ($W_{rm r}$(MgII $lambda2796$) $ge1.0$ AA and $W_{rm r}$(FeII $lambda2600$) or $W_{rm FeII}$ $ge1$ AA) at $0.5<z<1.5$ using the Giant Metrewave Radio Telescope and the Green Bank Telescope. We report six new HI 21-cm absorption detections from our sample, which have increased the known number of detections in strong MgII systems at this redshift range by $sim50$%. Combining our measurements with those in the literature, we find that the detection rate of HI 21-cm absorption increases with $W_{rm FeII}$, being four times higher in systems with $W_{rm FeII}$ $ge1$ AA compared to systems with $W_{rm FeII}$ $<1$ AA. The $N$(HI) associated with the HI 21-cm absorbers would be $ge 2 times 10^{20}$ cm$^{-2}$, assuming a spin temperature of $sim500$ K (based on HI 21-cm absorption measurements of damped Lyman-$alpha$ systems at this redshift range) and unit covering factor. We find that HI 21-cm absorption arises on an average in systems with stronger metal absorption. We also find that quasars with HI 21-cm absorption detected towards them have systematically higher $E(B-V)$ values than those which do not. Further, by comparing the velocity widths of HI 21-cm absorption lines detected in absorption- and galaxy-selected samples, we find that they show an increasing trend (significant at $3.8sigma$) with redshift at $z<3.5$, which could imply that the absorption originates from more massive galaxy haloes at high-$z$. Increasing the number of HI 21-cm absorption detections at these redshifts is important to confirm various trends noted here with higher statistical significance.
253 - R. Maiolino , R. Neri , A. Beelen 2007
We present observations with the IRAM Plateau de Bure Interferometer of three QSOs at z>5 aimed at detecting molecular gas in their host galaxies as traced by CO transitions. CO (5-4) is detected in SDSSJ033829.31+002156.3 at z=5.0267, placing it amo ngst the most distant sources detected in CO. The CO emission is unresolved with a beam size of ~1, implying that the molecular gas is contained within a compact region, less than ~3kpc in radius. We infer an upper limit on the dynamical mass of the CO emitting region of ~3x10^10 Msun/sin(i)^2. The comparison with the Black Hole mass inferred from near-IR data suggests that the BH-to-bulge mass ratio in this galaxy is significantly higher than in local galaxies. From the CO luminosity we infer a mass reservoir of molecular gas as high as M(H2)=2.4x10^10 Msun, implying that the molecular gas accounts for a significant fraction of the dynamical mass. When compared to the star formation rate derived from the far-IR luminosity, we infer a very short gas exhaustion timescale (~10^7 yrs), comparable to the dynamical timescale. CO is not detected in the other two QSOs (SDSSJ083643.85+005453.3 and SDSSJ163033.90+401209.6) and upper limits are given for their molecular gas content. When combined with CO observations of other type 1 AGNs, spanning a wide redshift range (0<z<6.4), we find that the host galaxy CO luminosity (hence molecular gas content) and the AGN optical luminosity (hence BH accretion rate) are correlated, but the relation is not linear: L(CO) ~ [lambda*L_lambda(4400A)]^0.72. Moreover, at high redshifts (and especially at z>5) the CO luminosity appears to saturate. We discuss the implications of these findings in terms of black hole-galaxy co-evolution.
231 - T. Hyvonen 2006
We present near-infrared H-band imaging of 15 intermediate redshift (0.5<z<1) radio quiet quasars (RQQ) in order to characterize the properties of their host galaxies. We are able to clearly detect the surrounding nebulosity in 12 objects, whereas th e object remains unresolved in three cases. For all the resolved objects, we find that the host galaxy is well represented by a de Vaucouleurs r^{1/4} surface brightness law. This is the first reasonably sized sample of intermediate redshift RQQs studied in the near-infrared. The RQQ host galaxies are luminous (average M_H=-26.3+-0.6) and large giant elliptical galaxies (average bulge scale length R_e = 11.3pm5.8 kpc). RQQ hosts are about 1 mag brighter than the typical low redshift galaxy luminosity L^*, and their sizes are similar to those of galaxies hosting lower redshift RQQs, indicating that there is no significant evolution at least up to z=1 of the host galaxy structure. We also find that RQQ hosts are about 0.5-1 mag fainter than radio-loud quasars (RLQ) hosts at the similar redshift range. The comparison of the host luminosity of intermediate redshift RQQ hosts with that for lower z sources shows a trend that is consistent with that expected from the passive evolution of the stars in the host galaxies. The nuclear luminosity and the nucleus/host galaxy luminosity ratio of the objects in our sample are intermediate between those of lower redshift RQQs and those of higher redshift (z>1) RQQs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا