ﻻ يوجد ملخص باللغة العربية
It is difficult to describe in a few pages the numerous specific techniques used to study absorption lines seen in QSO spectra and to review even rapidly the field of research based on their observation and analysis. What follows is therefore a pale introduction to the invaluable contribution of these studies to our knowledge of the gaseous component of the Universe and its cosmological evolution. A rich bibliography is given which, although not complete, will be hopefully useful for further investigations. Emphasis will be laid on the impact of this field on the question of the formation and evolution of galaxies.
Molecules dominate the cooling function of neutral metal-poor gas at high density. Observation of molecules at high redshift is thus an important tool toward understanding the physical conditions prevailing in collapsing gas. Up to now, detections ar
We investigate the variation of the ratio of the equivalent widths of the FeII$lambda$2600 line to the MgII$lambdalambda$2796,2803 doublet as a function of redshift in a large sample of absorption lines drawn from the JHU-SDSS Absorption Line Catalog
We have studied a sample of 809 Mg II absorption systems with 1.0 < z_abs < 1.86 in the spectra of SDSS QSOs, with the aim of understanding the nature and abundance of the dust and the chemical abundances in the intervening absorbers. Normalized, com
We present the results of a MgII absorption-line survey using QSO spectra from the SDSS EDR. Over 1,300 doublets with rest equivalent widths greater than 0.3AA and redshifts $0.366 le z le 2.269$ were identified and measured. We find that the $lambda
Results of a careful analysis of the highly ionized absorption systems, observed over the redshift range 2.198--2.2215 in the zem=2.24 HDFS-QSO J2233-606, are presented. Strong OVI and NeVIII absorptions are detected. Most of the lines show signature