ترغب بنشر مسار تعليمي؟ اضغط هنا

Inclusive Measure of |V_ub| with the Analytic Coupling Model

75   0   0.0 ( 0 )
 نشر من قبل Giancarlo Ferrera
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Ugo Aglietti




اسأل ChatGPT حول البحث

By analyzing B -> X_u l nu_l spectra with a model based on soft-gluon resummation and an analytic time-like QCD coupling, we obtain |V_ub| = (3.76 +-0.13 +- 0.22)*10^(-3), where the first and the second error refers to experimental and theoretical errors, respectively. The V_ub value is obtained from the available measured semileptonic branching fractions in limited regions of the phase-space. The distributions in the lepton energy E_l, the hadron invariant mass m_X, the light-cone momentum P_+ = E_X - p_X, together with the double distributions in (m_X,q^2) and (E_l,s_h^max), are used to select the phase-space regions. The q^2 is the dilepton squared momentum and s_h^max is the maximal m_X^2 at fixed q^2 and E_l. The V_ub value obtained is in complete agreement with the value coming from exclusive B decays and from an over-all fit to the Standard Model parameters. We show that the slight disagreement (up to +2 sigma) with respect to previous inclusive measurements is not related to different choices for the b (and c) masses but to a different modelling of the threshold (Sudakov) region.

قيم البحث

اقرأ أيضاً

The inclusive gluon production at midrapidities is described in the Color Glass Condensate formalism using the $k_T$ - factorization formula, which was derived at fixed coupling constant considering the scattering of a dilute system of partons with a dense one. Recent analysis demonstrated that this approach provides a satisfactory description of the experimental data for the inclusive hadron production in $pp/pA/AA$ collisions. However, these studies are based on the fixed coupling $k_T$ - factorization formula, which does not take into account the running coupling corrections, which are important to set the scales present in the cross section. In this paper we consider the running coupling corrected $k_T$ - factorization formula conjectured some years ago and investigate the impact of the running coupling corrections on the observables. In particular, the pseudorapidity distributions and charged hadrons multiplicity are calculated considering $pp$, $dAu/pPb$ and $AuAu/PbPb$ collisions at RHIC and LHC energies. We compare the corrected running coupling predictions with those obtained using the original $k_T$ - factorization assuming a fixed coupling or a prescription for the inclusion of the running of the coupling. Considering the Kharzeev - Levin - Nardi unintegrated gluon distribution and a simplified model for the nuclear geometry, we demonstrate that the distinct predictions are similar for the pseudorapidity distributions in $pp/pA/AA$ collisions and for the charged hadrons multiplicity in $pp/pA$ collisions. On the other hand, the running coupling corrected $k_T$ - factorization formula predicts a smoother energy dependence for $dN/deta$ in $AA$ collisions.
Inclusive semileptonic decays of beauty baryons are studied using the heavy quark expansion to ${cal O}(1/m_b^3)$, at leading order in $alpha_s$. The case of a polarized decaying baryon is examined, with reference to $Lambda_b$. An extension of the S tandard Model effective Hamiltonian inducing $b to U ell {bar u}_ ell$ transitions ($U=u,,c$ and $ell=e,,mu,,tau$) is considered, which comprises the full set of D=6 semileptonic operators with left-handed neutrinos. The effects of the new operators in several observables are described.
We summarize the main characteristics and recent results on B->Xulnu decays of a model based on soft-gluon resummation and an analytic time-like QCD coupling.
73 - Antonio Pich 2020
The inclusive production of hadrons through electroweak currents can be rigorously analysed with short-distance theoretical tools. The associated observables are insensitive to the involved infrared behaviour of the strong interaction, allowing for v ery precise tests of Quantum Chromodynamics. The theoretical predictions for $sigma(e^+e^-tomathrm{hadrons})$ and the hadronic decay widths of the $tau$ lepton and the $Z$, $W$ and Higgs bosons have reached an impressive accuracy of $mathcal{O}(alpha_s^4)$. Precise experimental measurements of the $Z$ and $tau$ hadronic widths have made possible the accurate determination of the strong coupling at two very different energy scales, providing a highly significant experimental verification of asymptotic freedom. A detailed discussion of the theoretical description of these processes and their current phenomenological status is presented. The most precise determinations of $alpha_s$ from other sources are also briefly reviewed and compared with the fully-inclusive results.
We investigate the feasibility of constraining parton distribution functions in the proton through a comparison with data on semi-inclusive deep-inelastic lepton-nucleon scattering. Specifically, we reweight replicas of these distributions according to how well they reproduce recent, very precise charged kaon multiplicity measurements and analyze how this procedure optimizes the determination of the sea quark densities and improves their uncertainties. The results can help to shed new light on the long standing question on the size of the flavor and charge symmetry breaking among quarks of radiative origin. An iterative method is proposed and adopted to account for the inevitable correlation with what is assumed about the parton-to-hadron fragmentation functions in the reweighting procedure. It is shown how the fragmentation functions can be optimized simultaneously in each step of the iteration. As a first case study, we implement this method to analyze kaon production data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا