ﻻ يوجد ملخص باللغة العربية
We investigate the topology of the spin-polarized charge density in bcc and fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical structures, in some cases the spin-polarized densities are characterized by unique topologies; for example, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical of any known for non-magnetic materials. In these cases, the two spin-densities are correlated: the spin-minority electrons have directional bond paths with deep minima in the minority density, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of two distinct spin topologies suggests that a well-known magnetic phase transition in iron can be fruitfully reexamined in light of these topological changes. We show that the two phase changes seen in fcc iron (paramagnetic to low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking paradigm and proceeds without a topological transformation, while the latter also involves a topological catastrophe.
Large scale computer simulations are used to elucidate a longstanding controversy regarding the existence, or otherwise, of spin waves in paramagnetic BCC iron. Spin dynamics simulations of the dynamic structure factor of a Heisenberg model of Fe wit
Proper inclusion of van der Waals (vdW) interactions in theoretical simulations based on standard density functional theory (DFT) is crucial to describe the physics and chemistry of systems such as organic and layered materials. Many encouraging appr
A comprehensive, critical study of the vibrational, thermodynamic and thermoelastic properties of bcc iron is presented, using well established semi-empirical embedded-atom method potentials available in the literature. Classical molecular dynamics s
Extensive atomistic simulations based on the quasiparticle (QA) approach are performed to determine the momentous aspects of the displacive fcc/bcc phase transformation in a binary system. We demonstrate that the QA is able to predict the major struc
We present evidence for spin polarized charge carriers in In$_2$O$_3$ films. Both In$_2$O$_3$ and Cr doped In$_2$O$_3$ films exhibit room temperature ferromagnetism after vacuum annealing, with a saturation moment of approximately 0.5 emu/cm$^3$. We