ترغب بنشر مسار تعليمي؟ اضغط هنا

Fcc -> bcc phase transition kinetics in an immiscible binary system: atomistic evidence of the twinning mechanism of transformation

143   0   0.0 ( 0 )
 نشر من قبل Gilles Demange
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensive atomistic simulations based on the quasiparticle (QA) approach are performed to determine the momentous aspects of the displacive fcc/bcc phase transformation in a binary system. We demonstrate that the QA is able to predict the major structural characteristics of fcc/bcc phase transformations, including the growth of a bcc nuclei in a fcc matrix, and eventually the formation of an internally twinned structure consisting in two variants with Kurdjumov-Sachs orientation relationship. At atomic level, we determine the defect structure of twinning boundaries and fcc/bcc interfaces, and identify the main mechanism for their propagation. In details, it is shown that twin boundaries are propagated by the propagation of screw dislocations in fcc along the <-1-11>_{alpha} direction, while the propagation of fcc screw dislocations along coherent terrace edges is the pivotal vector of the fcc/bcc transformation. The simulation results are compared with our TEM and HRTEM observations of Fe-rich bcc twinned particle embedded in the fcc Cu-rich matrix in the Cu-Fe-Co system.

قيم البحث

اقرأ أيضاً

Many structural transformations involve a group-nonsubgroup relationship between the initial and transformed phases, and hence are beyond the purview of conventional Landau theory. We utilize a systematic and robust methodology to describe such recon structive martensitic transformations by coupling group-theoretical arguments to first-principles calculations. In this context we (i) use a symmetry-based algorithm to enumerate transformation paths, (ii) evaluate the energy barriers along these transformation paths using all-electron first principles calculations, (iii) deduce the full set of primary and secondary order parameters for each path to establish the appropriate Ginzburg-Landau free-energy functionals, and (iv) for each path, identify special points of the primary order parameter, as a function of local distortions, corresponding to the end product phase. We apply this method to the study of a pressure driven body-centered cubic (bcc) to hexagonal close-packed (hcp) transformation in titanium. We find a generalization of the Burgers mechanism, and also find that there is no energy barrier to this transformation. In fact, surprisingly, we also find a region of volumes in which the intermediate path becomes more stable than either of the end-points (bcc or hcp). We therefore predict a new orthorhombic phase for Ti between 51 and 62 GPa.
136 - Bo Chen , Qiyu Zeng , Han Wang 2020
A detailed understanding of the material response to rapid compression is challenging and demanding. For instance, the element gold under dynamic compression exhibits complex phase transformations where there exist some large discrepancies between ex perimental and theoretical studies. Here, we combined large-scale molecular dynamics simulations with a deep potential to elucidate the dynamic compression processes of gold from an atomic level. The potential is constructed by accurately reproducing the free energy surfaces of density-functional-theory calculations for gold, from ambient conditions to 15 500 K and 500 GPa. Within this framework, we extend the simulations up to 200 000 atoms size, and found a much lower pressure threshold for phase transitioning from face-centered cubic (FCC) to body-centered (BCC), as compared to previous calculations. Furthermore, the transition pressure is strongly dependent on the shock direction, namely 159 GPa for (100) orientation and 219 GPa for (110) orientation, respectively. Most importantly, the accurate atomistic perspective presents that the shocked BCC structure contains unique features of medium-range and short-range orders, which is named disorders here. We propose a model and demonstrate that the existence of disorders significantly reduces the Gibbs free energies of shocked structures, therefore leading to the lowering of the phase transition pressure. The present study provides a new path to understand the structure dynamics under extreme conditions.
158 - G. Sainath , B.K. Choudhary 2017
Molecular dynamics simulations have been performed to understand the influence of temperature on the tensile deformation and fracture behavior of $<$111$>$ BCC Fe nanowires. The simulations have been carried out at different temperatures in the range 10-1000 K employing a constant strain rate of $1times$ $10^8$ $s^{-1}$. The results indicate that at low temperatures (10-375 K), the nanowires yield through the nucleation of a sharp crack and fails in brittle manner. On the other hand, nucleation of multiple 1/2$<$111$>$ dislocations at yielding followed by significant plastic deformation leading to ductile failure has been observed at high temperatures in the range 450-1000 K. At the intermediate temperature of 400 K, the nanowire yields through nucleation of crack associated with many mobile 1/2$<$111$>$ and immobile $<$100$>$ dislocations at the crack tip and fails in ductile manner. The ductile-brittle transition observed in $<$111$>$ BCC Fe nanowires is appropriately reflected in the stress-strain behavior and plastic strain at failure. The ductile-brittle transition increases with increasing nanowire size. The change in fracture behavior has been discussed in terms of the relative variations in yield and fracture stresses and change in slip behavior with respect to temperature. Further, the dislocation multiplication mechanism assisted by the kink nucleation from the nanowire surface observed at high temperatures has been presented.
The pressure-induced phase transition of bismuth telluride, Bi2Te3, has been studied by synchrotron x-ray diffraction measurements at room temperature using a diamond-anvil cell (DAC) with loading pressures up to 29.8 GPa. We found a high-pressure bo dy-centered cubic (bcc) phase in Bi2Te3 at 25.2 GPa, which is denoted as phase IV, and this phase apperars above 14.5 GPa. Upon releasing the pressure from 29.8 GPa, the diffraction pattern changes with pressure hysteresis. The original rhombohedral phase is recovered at 2.43 GPa. The bcc structure can explain the phase IV peaks. We assumed that the structural model of phase IV is analogous to a substitutional binary alloy; the Bi and Te atoms are distributed in the bcc-lattice sites with space group Im-3m. The results of Rietveld analysis based on this model agree well with both the experimental data and calculated results. Therefore, the structure of phase IV in Bi2Te3 can be explained by a solid solution with a bcc lattice in the Bi-Te (60 atomic% tellurium) binary system.
The pressure induced bcc to hcp transition in Fe has been investigated via ab-initio electronic structure calculations. It is found by the disordered local moment (DLM) calculations that the temperature induced spin fluctuations result in the decreas e of the energy of Burgers type lattice distortions and softening of the transverse $N$-point $TA_1$ phonon mode with $[bar{1}10]$ polarization. As a consequence, spin disorder in an system leads to the increase of the amplitude of atomic displacements. On the other hand, the exchange coupling parameters obtained in our calculations strongly decrease at large amplitude of lattice distortions. This results in a mutual interrelation of structural and magnetic degrees of freedom leading to the instability of the bcc structure under pressure at finite temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا