ﻻ يوجد ملخص باللغة العربية
In this paper we study the (equivariant) topological types of a class of 3-dimensional closed manifolds (i.e., 3-dimensional small covers), each of which admits a locally standard $(mathbb{Z}_2)^3$-action such that its orbit space is a simple convex 3-polytope. We introduce six equivariant operations on 3-dimensional small covers. These six operations are interesting because of their combinatorial natures. Then we show that each 3-dimensional small cover can be obtained from $mathbb{R}P^3$ and $S^1timesmathbb{R}P^2$ with certain $(mathbb{Z}_2)^3$-actions under these six operations. As an application, we classify all 3-dimensional small covers up to $({Bbb Z}_2)^3$-equivariant unoriented cobordism.
For a closed 3-manifold $M$ in a certain class, we give a presentation of the cellular chain complex of the universal cover of $M$. The class includes all surface bundles, some surgeries of knots in $S^3$, some cyclic branched cover of $S^3$, and som
As a generalization of Davis-Januszkiewicz theory, there is an essential link between locally standard $(Z_2)^n$-actions (or $T^n$-actions) actions and nice manifolds with corners, so that a class of nicely behaved equivariant cut-and-paste operation
Every closed orientable surface S has the following property: any two connected covers of S of the same degree are homeomorphic (as spaces). In this, paper we give a complete classification of compact 3-manifolds with empty or toroidal boundary which
We study the topology of a random cubical complex associated to Bernoulli site percolation on a cubical grid. We begin by establishing a limit law for homotopy types. More precisely, looking within an expanding window, we define a sequence of normali
Let $N$ be a prime 3-manifold that is not a closed graph manifold. Building on a result of Hongbin Sun and using a result of Asaf Hadari we show that for every $kinBbb{N}$ there exists a finite cover $tilde{N}$ of $N$ such that $|operatorname{Tor} H_1(tilde{N};Bbb{Z})|>k$.