ترغب بنشر مسار تعليمي؟ اضغط هنا

TEDI: the TripleSpec Exoplanet Discovery Instrument

53   0   0.0 ( 0 )
 نشر من قبل Matthew Muterspaugh
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jerry Edelstein




اسأل ChatGPT حول البحث

The TEDI (TripleSpec - Exoplanet Discovery Instrument) will be the first instrument fielded specifically for finding low-mass stellar companions. The instrument is a near infra-red interferometric spectrometer used as a radial velocimeter. TEDI joins Externally Dispersed Interferometery (EDI) with an efficient, medium-resolution, near IR (0.9 - 2.4 micron) echelle spectrometer, TripleSpec, at the Palomar 200 telescope. We describe the instrument and its radial velocimetry demonstration program to observe cool stars.


قيم البحث

اقرأ أيضاً

62 - D. Defr`ere , P. Hinz , A. Skemer 2015
The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for high-sensitivity, high-contrast, and high-resolution infrared (1.5-13 $mu$m) imaging of nearby planetary systems. To carry out a wide range of high- spatial resolution observations, it can combine the two AO-corrected 8.4-m apertures of the LBT in various ways including direct (non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging, non-redundant aperture masking, and nulling interferometry. It also has broadband, narrowband, and spectrally dispersed capabilities. In this paper, we review the performance of these modes in terms of exoplanet science capabilities and describe recent instrumental milestones such as first-light Fizeau images (with the angular resolution of an equivalent 22.8-m telescope) and deep interferometric nulling observations.
ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) is a VLT ultra-stable high resolution spectrograph that will be installed in Paranal Observatory in Chile at the end of 2017 and offered to the community by 20 18. The spectrograph will be located at the Combined-Coude Laboratory of the VLT and will be able to operate with one or (simultaneously) several of the four 8.2 m Unit Telescopes (UT) through four optical Coude trains. Combining efficiency and extreme spectroscopic precision, ESPRESSO is expected to gaining about two magnitudes with respect to its predecessor HARPS. We aim at improving the instrumental radial-velocity precision to reach the 10 cm s$^-1$ level, thus opening the possibility to explore new frontiers in the search for Earth-mass exoplanets in the habitable zone of quiet, nearby G to M-dwarfs. ESPRESSO will be certainly an important development step towards high-precision ultra-stable spectrographs on the next generation of giant telescopes such as the E-ELT.
We introduce the RISTRETTO instrument for ESO VLT, an evolution from the original idea of connecting the SPHERE high-contrast facility to the ESPRESSO spectrograph (Lovis et al 2017). RISTRETTO is an independent, AO-fed spectrograph proposed as a vis itor instrument, with the goal of detecting nearby exoplanets in reflected light for the first time. RISTRETTO aims at characterizing the atmospheres of Proxima b and several other exoplanets using the technique of high-contrast, high-resolution spectroscopy. The instrument is composed of two parts: a front-end to be installed on VLT UT4 providing a two-stage adaptive optics system using the AOF facility with coronagraphic capability and a 7-fiber IFU, and a diffraction-limited R=135,000 spectrograph in the 620-840 nm range. We present the requirements and the preliminary design of the instrument.
135 - S. C. C. Barros 2011
WASP-13b is a sub-Jupiter mass exoplanet orbiting a G1V type star with a period of 4.35 days. The current uncertainty in its impact parameter (0 < b < 0.46) resulted in poorly defined stellar and planetary radii. To better constrain the impact parame ter we have obtained high precision transit observations with the RISE instrument mounted on 2.0 m Liverpool Telescope. We present four new transits which are fitted with an MCMC routine to derive accurate system parameters. We found an orbital inclination of 85.2 pm 0.3 degrees resulting in stellar and planetary radii of 1.56 pm 0.04 Rodot and 1.39 pm 0.05 RJup, respectively. This suggests that the host star has evolved off the main-sequence and is in the shell hydrogen-burning phase. We also discuss how the limb darkening affects the derived system parameters. With a density of 0.17{rho}J, WASP-13b joins the group of low density planets whose radii are too large to be explained by standard irradiation models. We derive a new ephemeris for the system, T0 = 2455575.5136 pm 0.0016 (HJD) and P = 4.353011 pm 0.000013 days. The planet equilibrium temperature (Tequ = 1500 K) and the bright host star (V = 10.4 mag) make it a good candidate for follow-up atmospheric studies.
105 - D. A. Neufeld 2012
We report the first detection of interstellar mercapto radicals, obtained along the sight-line to the submillimeter continuum source W49N. We have used the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 - 3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant spectrum reveals SH absorption in material local to W49N, as well as in foreground gas, unassociated with W49N, that is located along the sight-line. For the foreground material at velocities in the range 37 - 44 km/s with respect to the local standard of rest, we infer a total SH column density ~ 2.6 E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio is much smaller than that predicted by standard models for the production of SH and H2S in turbulent dissipation regions and shocks, and suggests that the endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse molecular clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا