ترغب بنشر مسار تعليمي؟ اضغط هنا

RISTRETTO: a pathfinder instrument for exoplanet atmosphere characterization

88   0   0.0 ( 0 )
 نشر من قبل Bruno Chazelas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the RISTRETTO instrument for ESO VLT, an evolution from the original idea of connecting the SPHERE high-contrast facility to the ESPRESSO spectrograph (Lovis et al 2017). RISTRETTO is an independent, AO-fed spectrograph proposed as a visitor instrument, with the goal of detecting nearby exoplanets in reflected light for the first time. RISTRETTO aims at characterizing the atmospheres of Proxima b and several other exoplanets using the technique of high-contrast, high-resolution spectroscopy. The instrument is composed of two parts: a front-end to be installed on VLT UT4 providing a two-stage adaptive optics system using the AOF facility with coronagraphic capability and a 7-fiber IFU, and a diffraction-limited R=135,000 spectrograph in the 620-840 nm range. We present the requirements and the preliminary design of the instrument.



قيم البحث

اقرأ أيضاً

ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) is a VLT ultra-stable high resolution spectrograph that will be installed in Paranal Observatory in Chile at the end of 2017 and offered to the community by 20 18. The spectrograph will be located at the Combined-Coude Laboratory of the VLT and will be able to operate with one or (simultaneously) several of the four 8.2 m Unit Telescopes (UT) through four optical Coude trains. Combining efficiency and extreme spectroscopic precision, ESPRESSO is expected to gaining about two magnitudes with respect to its predecessor HARPS. We aim at improving the instrumental radial-velocity precision to reach the 10 cm s$^-1$ level, thus opening the possibility to explore new frontiers in the search for Earth-mass exoplanets in the habitable zone of quiet, nearby G to M-dwarfs. ESPRESSO will be certainly an important development step towards high-precision ultra-stable spectrographs on the next generation of giant telescopes such as the E-ELT.
Submillimeter cameras now have up to $10^4$ pixels (SCUBA 2). The proposed CCAT 25-meter submillimeter telescope will feature a 1 degree field-of-view. Populating the focal plane at 350 microns would require more than $10^6$ photon-noise limited pixe ls. To ultimately achieve this scaling, simple detectors and high-density multiplexing are essential. We are addressing this long-term challenge through the development of frequency-multiplexed superconducting microresonator detector arrays. These arrays use lumped-element, direct-absorption resonators patterned from titanium nitride films. We will discuss our progress toward constructing a scalable 350 micron pathfinder instrument focusing on fabrication simplicity, multiplexing density, and ultimately a low per-pixel cost.
Since the MICROSCOPE instrument aims to measure accelerations as low as a few 10$^{-15}$,m,s$^{-2}$ and cannot operate on ground, it was obvious to have a large time dedicated to its characterization in flight. After its release and first operation, the characterization experiments covered all the aspects of the instrument design in order to consolidate the scientific measurements and the subsequent conclusions drawn from them. Over the course of the mission we validated the servo-control and even updated the PID control laws for each inertial sensor. Thanks to several dedicated experiments and the analysis of the instrument sensitivities, we have been able to identify a number of instrument characteristics such as biases, gold wire and electrostatic stiffnesses, non linearities, couplings and free motion ranges of the test-masses, which may first impact the scientific objective and secondly the analysis of the instrument good operation.
62 - D. Defr`ere , P. Hinz , A. Skemer 2015
The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for high-sensitivity, high-contrast, and high-resolution infrared (1.5-13 $mu$m) imaging of nearby planetary systems. To carry out a wide range of high- spatial resolution observations, it can combine the two AO-corrected 8.4-m apertures of the LBT in various ways including direct (non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging, non-redundant aperture masking, and nulling interferometry. It also has broadband, narrowband, and spectrally dispersed capabilities. In this paper, we review the performance of these modes in terms of exoplanet science capabilities and describe recent instrumental milestones such as first-light Fizeau images (with the angular resolution of an equivalent 22.8-m telescope) and deep interferometric nulling observations.
To address the the problem of calibration of instrument systematics in transit light curves, we present the Python package ExoTiC-ISM. Transit spectroscopy can reveal many different chemical components in exoplanet atmospheres, but such results depen d on well-calibrated transit light curve observations. Each transit data set will contain instrument systematics that depend on the instrument used and will need to be calibrated out with an instrument systematic model. The proposed solution in Wakeford et al. (2016) (arXiv:1601.02587 [astro-ph.EP]) is to use a marginalisation across a grid of systematic models in order to retrieve marginalised transit parameters. Doing this over observations in multiple wavelengths yields a robust transmission spectrum of an exoplanet. ExoTiC-ISM provides tools to perform this analysis, and its current capability contains a systematic grid that is applicable to the Wide Field Camera 3 (WFC3) detector on the Hubble Space Telescope (HST), particularly for the two infrared grisms G141 and G102. By modularisation of the code and implementation of more systematic grids, ExoTiC-ISM can be used for other instruments, and an implementation for select detectors on the James Webb Space Telescope (JWST) will provide robust transit spectra in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا