ترغب بنشر مسار تعليمي؟ اضغط هنا

ESPRESSO on VLT: An Instrument for Exoplanet Research

198   0   0.0 ( 0 )
 نشر من قبل Jonay I. Gonzalez Hernandez
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) is a VLT ultra-stable high resolution spectrograph that will be installed in Paranal Observatory in Chile at the end of 2017 and offered to the community by 2018. The spectrograph will be located at the Combined-Coude Laboratory of the VLT and will be able to operate with one or (simultaneously) several of the four 8.2 m Unit Telescopes (UT) through four optical Coude trains. Combining efficiency and extreme spectroscopic precision, ESPRESSO is expected to gaining about two magnitudes with respect to its predecessor HARPS. We aim at improving the instrumental radial-velocity precision to reach the 10 cm s$^-1$ level, thus opening the possibility to explore new frontiers in the search for Earth-mass exoplanets in the habitable zone of quiet, nearby G to M-dwarfs. ESPRESSO will be certainly an important development step towards high-precision ultra-stable spectrographs on the next generation of giant telescopes such as the E-ELT.



قيم البحث

اقرأ أيضاً

ESPRESSO is the new high-resolution spectrograph of ESOs Very-Large Telescope (VLT). It was designed for ultra-high radial-velocity precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical ex periments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UT) of the VLT at a spectral resolving power of 140,000 or 190,000 over the 378.2 to 788.7 nm wavelength range, or with all UTs together, turning the VLT into a 16-m diameter equivalent telescope in terms of collecting area, while still providing a resolving power of 70,000. We provide a general description of the ESPRESSO instrument, report on the actual on-sky performance, and present our Guaranteed-Time Observation (GTO) program with its first results. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1st, 2018, but improvements to the instrument and re-commissioning runs were conducted until July 2019. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65 arcsec exceeds the 10% mark under nominal astro-climatic conditions. We demonstrate a radial-velocity precision of better than 25 cm/s during one night and 50 cm/s over several months. These values being limited by photon noise and stellar jitter show that the performanceis compatible with an instrumental precision of 10 cm/s. No difference has been measured across the UTs neither in throughput nor RV precision. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterisation and many other fields.
194 - F. Pepe , P. Molaro , S. Cristiani 2014
The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coude Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coude trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm/s level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year.
546 - R.L. Akeson , X. Chen , D. Ciardi 2013
We describe the contents and functionality of the NASA Exoplanet Archive, a database and tool set funded by NASA to support astronomers in the exoplanet community. The current content of the database includes interactive tables containing properties of all published exoplanets, Kepler planet candidates, threshold-crossing events, data validation reports and target stellar parameters, light curves from the Kepler and CoRoT missions and from several ground-based surveys, and spectra and radial velocity measurements from the literature. Tools provided to work with these data include a transit ephemeris predictor, both for single planets and for observing locations, light curve viewing and normalization utilities, and a periodogram and phased light curve service. The archive can be accessed at http://exoplanetarchive.ipac.caltech.edu.
62 - D. Defr`ere , P. Hinz , A. Skemer 2015
The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for high-sensitivity, high-contrast, and high-resolution infrared (1.5-13 $mu$m) imaging of nearby planetary systems. To carry out a wide range of high- spatial resolution observations, it can combine the two AO-corrected 8.4-m apertures of the LBT in various ways including direct (non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging, non-redundant aperture masking, and nulling interferometry. It also has broadband, narrowband, and spectrally dispersed capabilities. In this paper, we review the performance of these modes in terms of exoplanet science capabilities and describe recent instrumental milestones such as first-light Fizeau images (with the angular resolution of an equivalent 22.8-m telescope) and deep interferometric nulling observations.
ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine the ir functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا