ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Solving the mystery of booming sand dunes

235   0   0.0 ( 0 )
 نشر من قبل Bruno Andreotti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show here that the standard physical model used by Vriend et al. to analyse seismograph data, namely a non-dispersive bulk propagation, does not apply to the surface layer of sand dunes. According to several experimental, theoretical and field results, the only possible propagation of sound waves in a dry sand bed under gravity is through an infinite, yet discrete, number of dispersive surface modes. Besides, we present a series of evidences, most of which have already been published in the literature, that the frequency of booming avalanches is not controlled by any resonance as argued in this article. In particular, plotting the data provided by Vriend et al. as a table, it turns out that they do not present any correlation between the booming frequency and their estimate of the resonant frequency.


قيم البحث

اقرأ أيضاً

As a droplet impacts on a granular substrate, both the intruder and the target deform, during which the liquid may penetrate into the substrate. {These three aspects together distinguish} it from other impact phenomena in the literature. We perform h igh-speed, double-laser profilometry measurements and disentangle the dynamics into three aspects: the deformation of the substrate during the impact, the maximum spreading diameter of the droplet, and the penetration of the liquid into the substrate. By systematically varying the impact speed and the packing fraction of the substrate, (i) the substrate deformation indicates a critical packing fraction $phi^*approx 0.585$; (ii) the maximum droplet spreading diameter is found to scale with a Weber number corrected by the substrate deformation; and (iii) a model about the liquid penetration is established and is used to explain the observed crater morphology transition.
Crescentic shape dunes, known as barchan dunes, are formed by the action of a fluid flow on a granular bed. These bedforms are common in many environments, existing under water or in air, and being formed from grains organized in different initial ar rangements. Although they are frequently found in nature and industry, details about their development are still to be understood. In a recent paper [C. A. Alvarez and E. M. Franklin, Phys. Rev. E 96, 062906 (2017)], we proposed a timescale for the development and equilibrium of single barchans based on the growth of their horns. In the present Letter, we report measurements of the growth of horns at the grain scale. In our experiments, conical heaps were placed in a closed conduit and individual grains were tracked as each heap, under the action of a water flow, evolved to a barchan dune. We identified the trajectories of the grains that migrated to the growing horns, and found that most of them came from upstream regions on the periphery of the initial heap, with an average displacement of the order of the heap size. In addition, we show that individual grains had transverse displacements by rolling and sliding that are not negligible, with many of them going around the heap. The mechanism of horns formation revealed by our experiments contrasts with the general picture that barchan horns form from the advance of the lateral dune flanks due to the scaling of migration velocity with the inverse of dune size. Our results change the way in which the growth of subaqueous barchan dunes is explained.
We use precision microwave spectroscopy of magnetically trapped, ultra-cold 87Rb to characterize intra- and inter-state density correlations. The cold collision shifts for both normal and condensed clouds are measured. The results verify the presence of the sometimes controversial factors of two, in normal-cloud mean-field energies, both within a particular state and between two distinct spin species. One might expect that as two spin species decohere, the inter-state factor of two would revert to unity, but the associated frequency chirp one naively expects from such a trend is not observed in our data.
98 - H. Caps , N. Vandewalle 2002
An experimental study of a granular surface submitted to a circular fluid motion is presented. The appearance of an instability along the sand-water interface is observed beyond a critical radius $r_c$. This creates ripples with a spiral shape on the granular surface. A phase diagram of such patterns is constructed and discussed as a function of the rotation speed $omega$ of the flow and as a function of the height of water $h$ above the surface. The study of $r_c$ as a function of $h$, $omega$ and $r$ parameters is reported. Thereafter, $r_c$ is shown to depend on the rotation speed according to a power law. The ripple wavelength is found to decrease when the rotation speed increases and is proportional to the radial distance $r$. The azimuthal angle az of the spiral arms is studied. It is found that az scales with $homega r$. This lead to the conclusion that az depends on the fluid momentum. Comparison with experiments performed with fluids allows us to state that the spiral patterns are not the signature of an instability of the boundary layer.
We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wa velength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different ``exotic patterns and their geophysical implications are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا