ﻻ يوجد ملخص باللغة العربية
We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate Sigma vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain -- for the very light fermion masses -- values for Sigma that follow closely the analytical predictions in the continuum.
We perform dynamical QCD simulations with $n_f=2$ overlap fermions by hybrid Monte-Carlo method on $6^4$ to $8^3times 16$ lattices. We study the problem of topological sector changing. A new method is proposed which works without topological sector c
We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on N_t=6 and 8 lattices. All our runs are performed with fixed global topology. Ou
We present results of a hybrid Monte-Carlo algorithm for dynamical, $n_f=2$, four-dimensional QCD with overlap fermions. The fermionic force requires careful treatment, when changing topological sectors. The pion mass dependence of the topological su
We study the finite temperature transition in QCD with two flavors of dynamical fermions at a pseudoscalar pion mass of about 350 MeV. We use lattices with temporal extent of $N_t$=8, 10 and 12. For the first time in the literature a continuum limit
We apply the Hybrid Monte Carlo method to the simulation of overlap fermions. We give the fermionic force for the molecular dynamics update. We present early results on a small dynamical chiral ensemble.