ﻻ يوجد ملخص باللغة العربية
We study the finite temperature transition in QCD with two flavors of dynamical fermions at a pseudoscalar pion mass of about 350 MeV. We use lattices with temporal extent of $N_t$=8, 10 and 12. For the first time in the literature a continuum limit is carried out for several observables with dynamical overlap fermions. These findings are compared with results obtained within the staggered fermion formalism at the same pion masses and extrapolated to the continuum limit. The presented results correspond to fixed topology and its effect is studied in the staggered case. Nice agreement is found between the overlap and staggered results.
QCD thermodynamics is considered using Wilson fermions in the fixed scale approach. The temperature dependence of the renormalized chiral condensate, quark number susceptibility and Polyakov loop is measured at four lattice spacings allowing for a co
We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were
We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on N_t=6 and 8 lattices. All our runs are performed with fixed global topology. Ou
We perform dynamical QCD simulations with $n_f=2$ overlap fermions by hybrid Monte-Carlo method on $6^4$ to $8^3times 16$ lattices. We study the problem of topological sector changing. A new method is proposed which works without topological sector c
We study the deconfinement transition in two-flavour lattice QCD with dynamical overlap fermions. Our simulations have been carried out on a $16^3 times 6$ lattice at a pion mass around 500 MeV with a special HMC algorithm without any approximation s