ﻻ يوجد ملخص باللغة العربية
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincare special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics.
The properties of Lorentz transformations in de Sitter relativity are studied. It is shown that, in addition to leaving invariant the velocity of light, they also leave invariant the length-scale related to the curvature of the de Sitter spacetime. T
The dispersion relation of de Sitter special relativity is obtained in a simple and compact form, which is formally similar to the dispersion relation of ordinary special relativity. It is manifestly invariant under change of scale of mass, energy an
We perform a minisuperspace analysis of an information-theoretic nonlinear Wheeler-deWitt (WDW) equation for de Sitter universes. The nonlinear WDW equation, which is in the form of a difference-differential equation, is transformed into a pure diffe
We compute the linearized Weyl-Weyl correlator using a new solution for the graviton propagator on de Sitter background in de Donder gauge. The result agrees exactly with a previous computation in a noncovariant gauge. We also use dimensional regular
We discuss several aspects of quantum field theory of a scalar field in a Friedmann universe, clarifying and highlighting several conceptual and technical issues. (A) We show that one can map the dynamics of (1) a massless scalar field in a universe