ﻻ يوجد ملخص باللغة العربية
The dispersion relation of de Sitter special relativity is obtained in a simple and compact form, which is formally similar to the dispersion relation of ordinary special relativity. It is manifestly invariant under change of scale of mass, energy and momentum, and can thus be applied at any energy scale. When applied to the universe as a whole, the de Sitter special relativity is found to provide a natural scenario for the existence of an evolving cosmological term, and agrees in particular with the present-day observed value. It is furthermore consistent with a conformal cyclic view of the universe, in which the transition between two consecutive eras occurs through a conformal invariant spacetime.
The properties of Lorentz transformations in de Sitter relativity are studied. It is shown that, in addition to leaving invariant the velocity of light, they also leave invariant the length-scale related to the curvature of the de Sitter spacetime. T
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincare special relativity is no longer valid and must be replaced by a de Si
We investigate main properties and mutual relations of the so-called A and B-metrics with any value of the cosmological constant. In particular, we explicitly show that both the AII and BI-metrics are, in fact, the famous Schwarzschild-(anti-)de Sitt
We provide a prescription to compute the gravitational multipole moments of compact objects for asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational multipole moments in terms of Noether charges a
We compute the linearized Weyl-Weyl correlator using a new solution for the graviton propagator on de Sitter background in de Donder gauge. The result agrees exactly with a previous computation in a noncovariant gauge. We also use dimensional regular