ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Quantum Cosmology of de Sitter Space

171   0   0.0 ( 0 )
 نشر من قبل Rajesh R. Parwani
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a minisuperspace analysis of an information-theoretic nonlinear Wheeler-deWitt (WDW) equation for de Sitter universes. The nonlinear WDW equation, which is in the form of a difference-differential equation, is transformed into a pure difference equation for the probability density by using the current conservation constraint. In the present study we observe some new features not seen in our previous approximate investigation, such as a nonzero minimum and maximum allowable size to the quantum universe: An examination of the effective classical dynamics supports the interpretation of a bouncing universe. The studied model suggests implications for the early universe, and plausibly also for the future of an ongoing accelerating phase of the universe.



قيم البحث

اقرأ أيضاً

We study the effects of an information-theoretically motivated nonlinear correction to the Wheeler-deWitt equation in the minisuperspace scheme for flat, $k=0$, Friedmann-Robertson-Walker (FRW) universes. When the only matter is a cosmological consta nt, the nonlinearity can provide a barrier that screens the original Big Bang, leading to the quantum creation of a universe through tunneling just as in the $k=1$ case. When the matter is instead a free massless scalar field, the nonlinearity can again prevent a contracting classical universe from reaching zero size by creating a bounce. Our studies here are self-consistent to leading order in perturbation theory for the nonlinear effects.
We extend our previous study on the effects of an information-theoretically motivated nonlinear correction to the Wheeler-deWitt equation in the minisuperspace scheme for FRW universes. Firstly we show that even when the geometry is hyperbolic, and m atter given by a cosmological constant, the nonlinearity can still provide a barrier to screen the initial singularity, just as in the case for flat universes. Secondly, in the flat case we show that singularity avoidance in the presence of a free massless scalar field is perturbatively possible for a very large class of initially unperturbed quantum states, generalising our previous discussion using Gaussian states.
We study the dynamics of a spherically symmetric thin shell of perfect fluid embedded in d-dimensional Anti-de Sitter space-time. In global coordinates, besides collapsing solutions, oscillating solutions are found where the shell bounces back and fo rth between two radii. The parameter space where these oscillating solutions exist is scanned in arbitrary number of dimensions. As expected AdS3 appears to be singled out.
Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordstrom-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any non-extremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compu te the greybody factors for gravitons, photons, and conformal-coupling massless scalar particles by using the analytic solutions of the Teukolsky equation in the Kerr-de Sitter background. It turns out that the cosmological constant quenches the amplification factor and it approaches to zero towards the critical point where the Nariai and extremal limits merge together. We confirm that even near the critical point, the superradiance of gravitons is more significant than that of photons and scalar particles. Angular momentum is carried out by particles several times faster than mass energy decreases. This means that a Kerr-de Sitter black hole rapidly spins down to a nearly Schwarzschild-de Sitter black hole before it completely evaporates. We also compute the time evolution of the Bekenstein-Hawking entropy. The total entropy of the Kerr-de Sitter black hole and cosmological horizon increases with time, which is consistent with the generalized second law of thermodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا