ﻻ يوجد ملخص باللغة العربية
In a trapped Bose-Einstein condensate, subject to the action of an alternating external field, coherent topological modes can be resonantly excited. Depending on the amplitude of the external field and detuning parameter, there are two principally different regimes of motion, with mode locking and without it. The change of the dynamic regime corresponds to a dynamic phase transition. This transition can be characterized by an effective order parameter defined as the difference between fractional mode populations averaged over the temporal period of oscillations. The behavior of this order parameter, as a function of detuning, pumping amplitude, and atomic interactions is carefully analyzed. A special attention is payed to numerical calculations for the realistic case of a quadrupole exciting field and the system parameters accessible in current experiments.
We describe a pairing mean-field theory related to the Hartree-Fock-Bogoliubov approach, and apply it to the dynamics of dissociation of a molecular Bose-Einstein condensate (BEC) into correlated bosonic atom pairs. We also perform the same simulatio
Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic part
Recent experiments have demonstrated the generation of entanglement by quasi-adiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, i
Bose-Einstein condensates subject to short pulses (`kicks) from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential
Quantum systems in Fock states do not have a phase. When two or more Bose-Einstein condensates are sent into interferometers, they nevertheless acquire a relative phase under the effect of quantum measurements. The usual explanation relies on spontan