ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical instability in kicked Bose-Einstein condensates: Bogoliubov resonances

119   0   0.0 ( 0 )
 نشر من قبل Tania Monteiro Prof.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bose-Einstein condensates subject to short pulses (`kicks) from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential proliferation of non-condensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the excitation of Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.



قيم البحث

اقرأ أيضاً

The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary state s in the Thomas-Fermi limit, in the corotating frame, as well as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our findings have major implications for experimentally accessing this regime.
Vortex lattices in rapidly rotating Bose-Einstein condensates lead to a periodic modulation of the superfluid density with a triangular symmetry. Here we show that this symmetry can be combined with an external perturbation in order to create super-l attice structures with two or more periodicities. Considering a condensate which is kicked by an optical lattice potential, we find the appearance of transient moire lattice structures, which can be identified using the kinetic energy spectrum.
We investigate precursors of critical behavior in the quasienergy spectrum due to the dynamical instability in the kicked top. Using a semiclassical approach, we analytically obtain a logarithmic divergence in the density of states, which is analogou s to a continuous excited state quantum phase transition in undriven systems. We propose a protocol to observe the cusp behavior of the magnetization close to the critical quasienergy.
159 - Hadrien Kurkjian 2017
We study generation of non-local correlations by atomic interactions in a pair of bi-modal Bose-Einstein Condensates in state-dependent potentials including spatial dynamics. The wave-functions of the four components are described by combining a Fock state expansion with a time-dependent Hartree-Fock Ansatz, so that both the spatial dynamics and the local and non-local quantum correlations are accounted for. We find that despite the spatial dynamics, our protocole generates enough non-local entanglement to perform an EPR steering experiment with two spatially separated con-densates of a few thousands of atoms.
A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed i n a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components. Our scheme allows one to change the effective interactions between polarons in different sites from attractive to zero. This is achieved by simply changing the intensity and the frequency of the two lasers. Such arrangement opens new avenues for the study of strongly correlated condensed matter models in ultracold gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا