ترغب بنشر مسار تعليمي؟ اضغط هنا

Interferometric sensitivity and entanglement by scanning through quantum phase transitions in spinor Bose-Einstein condensates

116   0   0.0 ( 0 )
 نشر من قبل Polina Feldmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments have demonstrated the generation of entanglement by quasi-adiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, in terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to non-adiabaticity and measurement noise. Finally, we show that the quasi-adiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.



قيم البحث

اقرأ أيضاً

Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic part icles, thus can be considered to be a macroscopic qubit. One of the difficulties with such a system is how to effectively interact such qubits together in order to transfer quantum information and create entanglement. Here we propose a scheme of cavities containing spinor BECs coupled by optical fiber in order to achieve this task. We discuss entanglement generation and quantum state transfer between nodes using such macroscopic BEC qubits.
We present the phase diagram, the underlying stability and magnetic properties as well as the dynamics of nonlinear solitary wave excitations arising in the distinct phases of a harmonically confined spinor $F=1$ Bose-Einstein condensate. Particularl y, it is found that nonlinear excitations in the form of dark-dark-bright solitons exist in the antiferromagnetic and in the easy-axis phase of a spinor gas, being generally unstable in the former while possessing stability intervals in the latter phase. Dark-bright-bright solitons can be realized in the polar and the easy-plane phases as unstable and stable configurations respectively; the latter phase can also feature stable dark-dark-dark solitons. Importantly, the persistence of these types of states upon transitioning, by means of tuning the quadratic Zeeman coefficient from one phase to the other is unravelled. Additionally, the spin-mixing dynamics of stable and unstable matter waves is analyzed, revealing among others the coherent evolution of magnetic dark-bright, nematic dark-bright-bright and dark-dark-dark solitons. Moreover, for the unstable cases unmagnetized or magnetic droplet-like configurations and spin-waves consisting of regular and magnetic solitons are seen to dynamically emerge remaining thereafter robust while propagating for extremely large evolution times. Interestingly, exposing spinorial solitons to finite temperatures, their anti-damping in trap oscillation is showcased. It is found that the latter is suppressed for stronger bright soliton component fillings. Our investigations pave the wave for a systematic production and analysis involving spin transfer processes of such waveforms which have been recently realized in ultracold experiments.
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major ch allenge. We introduce spinor Bose-Einstein condensates as a versatile platform for studies of ESQPTs. Based on the mean-field dynamics, we define a topological order parameter that distinguishes between excited-state phases, and discuss how to interferometrically access the order parameter in current experiments. Our work opens the way for the experimental characterization of excited-state quantum phases in atomic many-body systems.
We demonstrate detection of a weak alternate-current magnetic field by application of the spin echo technique to F = 2 Bose-Einstein condensates. A magnetic field sensitivity of 12 pT/Hz^1/2 is attained with the atom number of 5*10^3 at spatial resol ution of 99 mu m^2. Our observations indicate magnetic field fluctuations synchronous with the power supply line frequency. We show that this noise is greatly suppressed by application of a reverse phase magnetic field. Our technique is useful in order to create a stable magnetic field environment, which is an important requirement for atomic experiments which require a weak bias magnetic field.
The Unruh effect predicts a thermal response for an accelerated detector moving through the vacuum. Here we propose an interferometric scheme to observe an analogue of the circular Unruh effect using a localized laser coupled to a Bose-Einstein conde nsate (BEC). Quantum fluctuations in the condensate are governed by an effective relativistic field theory, and as demonstrated, the coupled laser field acts as an effective Unruh-DeWitt detector thereof. The effective speed of light is lowered by 12 orders of magnitude to the sound velocity in the BEC. For detectors traveling close to the sound speed, observation of the Unruh effect in the analogue system becomes experimentally feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا