ﻻ يوجد ملخص باللغة العربية
Recent experiments have demonstrated the generation of entanglement by quasi-adiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, in terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to non-adiabaticity and measurement noise. Finally, we show that the quasi-adiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.
Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic part
We present the phase diagram, the underlying stability and magnetic properties as well as the dynamics of nonlinear solitary wave excitations arising in the distinct phases of a harmonically confined spinor $F=1$ Bose-Einstein condensate. Particularl
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major ch
We demonstrate detection of a weak alternate-current magnetic field by application of the spin echo technique to F = 2 Bose-Einstein condensates. A magnetic field sensitivity of 12 pT/Hz^1/2 is attained with the atom number of 5*10^3 at spatial resol
The Unruh effect predicts a thermal response for an accelerated detector moving through the vacuum. Here we propose an interferometric scheme to observe an analogue of the circular Unruh effect using a localized laser coupled to a Bose-Einstein conde