ترغب بنشر مسار تعليمي؟ اضغط هنا

What controls the ionized gas turbulent motions in dwarf galaxies?

183   0   0.0 ( 0 )
 نشر من قبل Alexei Moiseev
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using 3D spectroscopy with a scanning Fabry-Perot interferometer, we study the ionized gas kinematics in 59 nearby dwarf galaxies. Combining our results with data from literature, we provide a global relation between the gas velocity dispersion (sigma) and the star formation rate (SFR) and Halpha luminosity for galaxies in a very broad range of star formation rates SFR=0.001-300 Msun/yr. We find that the SFR-sigma relation for the combined sample of dwarf galaxies, star forming, local luminous, and ultra-luminous infrared galaxies can be fitted as sigma~ SFR^(5.3+-0.2). This implies that the slope of the L-sigma relation inferred from the sample of rotation supported disc galaxies (including mergers) is similar to the L-sigma relation of individual giant HII regions. We present arguments that the velocity dispersion of the ionized gas does not reflect the virial motions in the gravitational potential of dwarf galaxies, and instead is mainly determined by the energy injected into the interstellar medium by the ongoing star formation.



قيم البحث

اقرأ أيضاً

We analyze the intrinsic velocity dispersion properties of 648 star-forming galaxies observed by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, to explore the relation of intrinsic gas velocity dispersions with star formation rates (SFRs), SFR surface densities ($rm{Sigma_{SFR}}$), stellar masses and stellar mass surface densities ($rm{Sigma_{*}}$). By combining with high z galaxies, we found that there is a good correlation between the velocity dispersion and the SFR as well as $rm{Sigma_{SFR}}$. But the correlation between the velocity dispersion and the stellar mass as well as $rm{Sigma_{*}}$ is moderate. By comparing our results with predictions of theoretical models, we found that the energy feedback from star formation processes alone and the gravitational instability alone can not fully explain simultaneously the observed velocity-dispersion/SFR and velocity-dispersion/$rm{Sigma_{SFR}}$ relationships.
We used a large, homogeneous sample of 4178 z <= 0.8 Seyfert 1 galaxies and QSOs selected from the Sloan Digital Sky Survey to investigate the strength of Fe II emission and its correlation with other emission lines and physical parameters of active galactic nuclei. We find that the strongest correlations of almost all the emission-line intensity ratios and equivalent widths (EWs) are with the Eddington ratio (L/L_{Edd}), rather than with the continuum luminosity at 5100AA (L_{5100}) or black hole mass (M_{BH}); the only exception is the EW of ultraviolet Fe II emission, which does not correlate at all with broad-line width, L_{5100}, M_{BH}, or L/L_{Edd}. By contrast, the intensity ratios of both the ultraviolet and optical Fe II emission to Mg II lambda 2800 correlate quite strongly with L/L_{Edd}. Interestingly, among all the emission lines in the near-UV and optical, the EW of narrow optical Fe II emission has the strongest correlation with L/L_{Edd}. We suggest that the variation of the emission-line strength in active galaxies is regulated by L/L_{Edd} because it governs the global distribution of the column density of the clouds gravitationally bound in the line-emitting region, as well as its overall gas supply. The systematic dependence on L/L_{Edd} must be corrected when using the FeII/MgII intensity ratio as a measure of the Fe/Mg abundance ratio to study the history of chemical evolution in QSO environments.
We present results of optical broad-band and narrow-band Halpha observations of a sample of forty nearby early-type galaxies. The majority of sample galaxies are known to have dust in various forms viz. dust lanes, nuclear dust and patchy/filamentary dust. A detailed study of dust was performed for 12 galaxies with prominent dust features. The extinction curves for these galaxies run parallel to the Galactic extinction curve, implying that the properties of dust in these galaxies are similar to those of the Milky-Way. The ratio of total to selective extinction (Rv) varies between 2.1 and 3.8, with an average of 2.9 +/- 0.2, fairly close to its canonical value of 3.1 for our Galaxy. The average relative grain size <a>/a_Gal of dust particles in these galaxies turns out to be 1.01 +/- 0.2, while dust mass estimated using optical extinction lies in the range 10^2 to 10^4 M(sun) . The Halpha emission was detected in 23 out of 29 galaxies imaged through narrow- band filters with the Halpha luminosities in the range 10^38 - 10^41 erg s^-1. The mass of the ionized gas is in the range 10^3-10^5 M(sun). The morphology and extent of ionized gas is found similar to those of dust, indicating possible coexistence of dust and ionized gas in these galaxies. The absence of any apparent correlation between blue luminosity and normalized IRAS dust mass is suggestive of merger related origin of dust and gas in these galaxies.
The star formation rate (SFR) in the Central Molecular Zone (CMZ, i.e. the central 500 pc) of the Milky Way is lower by a factor of >10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theorie s. In this paper, we quantify which physical mechanisms could be responsible. On scales larger than the disc scale height, the low SFR is found to be consistent with episodic star formation due to secular instabilities or possibly variations of the gas inflow along the Galactic bar. The CMZ is marginally Toomre-stable when including gas and stars, but highly Toomre-stable when only accounting for the gas, indicating a low condensation rate of self-gravitating clouds. On small scales, we find that the SFR in the CMZ may be caused by an elevated critical density for star formation due to the high turbulent pressure. The existence of a universal density threshold for star formation is ruled out. The HI-H$_2$ phase transition of hydrogen, the tidal field, a possible underproduction of massive stars due to a bottom-heavy initial mass function, magnetic fields, and cosmic ray or radiation pressure feedback also cannot individually explain the low SFR. We propose a self-consistent cycle of star formation in the CMZ, in which the effects of several different processes combine to inhibit star formation. The rate-limiting factor is the slow evolution of the gas towards collapse - once star formation is initiated it proceeds at a normal rate. The ubiquity of star formation inhibitors suggests that a lowered central SFR should be a common phenomenon in other galaxies. We discuss the implications for galactic-scale star formation and supermassive black hole growth, and relate our results to the star formation conditions in other extreme environments.
We present VLT/XSHOOTER rest-frame UV-optical spectra of 10 Hot Dust-Obscured Galaxies (Hot DOGs) at $zsim2$ to investigate AGN diagnostics and to assess the presence and effect of ionized gas outflows. Most Hot DOGs in this sample are narrow-line do minated AGN (type 1.8 or higher), and have higher Balmer decrements than typical type 2 quasars. Almost all (8/9) sources show evidence for ionized gas outflows in the form of broad and blueshifted [O III] profiles, and some sources have such profiles in H$alpha$ (5/7) or [O II] (3/6). Combined with the literature, these results support additional sources of obscuration beyond the simple torus invoked by AGN unification models. Outflow rates derived from the broad [O III] line ($rm gtrsim10^{3},M_{odot},yr^{-1}$) are greater than the black hole accretion and star formation rates, with feedback efficiencies ($sim0.1-1%$) consistent with negative feedback to the host galaxys star formation in merger-driven quasar activity scenarios. We find the broad emission lines in luminous, obscured quasars are often better explained by outflows within the narrow line region, and caution that black hole mass estimates for such sources in the literature may have substantial uncertainty. Regardless, we find lower bounds on the Eddington ratio for Hot DOGs near unity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا