ﻻ يوجد ملخص باللغة العربية
Recently, the quantum brachistochrone problem is discussed in the literature by using non-Hermitian Hamilton operators of different type. Here, it is demonstrated that the passage time is tunable in realistic open quantum systems due to the biorthogonality of the eigenfunctions of the non-Hermitian Hamilton operator. As an example, the numerical results obtained by Bulgakov et al. for the transmission through microwave cavities of different shape are analyzed from the point of view of the brachistochrone problem. The passage time is shortened in the crossover from the weak-coupling to the strong-coupling regime where the resonance states overlap and many branch points (exceptional points) in the complex plane exist. The effect can {it not} be described in the framework of standard quantum mechanics with Hermitian Hamilton operator and consideration of $S$ matrix poles.
In this brief comment we attempt to clarify the apparent discrepancy between the papers [1] and [2] on the quantum brachistochrone, namely whether it is possible to use a judicious mixture of Hermitian and non-Hermitian quantum mechanics to evade the
Entanglement is closely related to some fundamental features of the dynamics of composite quantum systems: quantum entanglement enhances the speed of evolution of certain quantum states, as measured by the time required to reach an orthogonal state.
We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. Th
We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The pr
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scatte